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We demonstrate that many collective phenomena in multi-cellular systems can be
explained by models in which cells, despite their complexity, are represented as simple
particles which are parameterized mainly by their physical properties. We mainly focus
on two examples that nevertheless span a wide range of biological sub-disciplines:
Unstructured cell populations growing in cell culture and growing cell layers in early
animal development. While cultured unstructured cell populations would a priori been
classified as particularly suited for a biophysical approach since the degree to which they
are committed to a genetic program is expected to be modest, early animal development
would be expected to mark the other extreme—here the degree of determinism according
to a genetic program would be expected to be very high. We consider a number of
phenomena such as the growth kinetics and spatial structure formation of monolayers
and multicellular spheroids, the effect of the presence of another cell type surrounding
the growing cell population, the effect of mutations and the critical surface dynamics
of monolayers. Different from unstructured cell populations, cells in early development
and at tissue interfaces usually form highly organized structures. An example are
tissue layers. Under certain circumstances such layers are observed to fold. We show
that folding pattern again can largely be explained by physical mechanisms either by a
buckling instability or active cell shape changes. The paper combines new and published
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material and aims at an overview of a wide range of physical aspects in unstructured
populations and growing tissue layers.

KEY WORDS: individual cell based models, agent-based models, tumor growth,
monolayer growth, cell populations, biomechanics, early development, blastulation,
gastrulation

1. INTRODUCTION

After more than two decades of mainly focusing on genetic triggers and switches
the role of mechanics and physical interactions in the control of growth and pattern
formation in multi-cellular systems is attracting increasing interest (e.g. Refs. 1–5).

For example, both the saturation size and the shape of three dimensional multi-
cellular aggregates growing in an embedding medium (“multi-cellular spheroids”)
depend on the mechanical properties of the embedding medium, namely, its
rigidity.(6) In the experiments by Helmlinger et al.(6) the rigidity of the embed-
ding medium was increased by increasing its amount of agarose. An increase
of the agarose concentration leads to a smaller saturation size of the expanding
multi-cellular spheroid.

Cells either on flat substrates,(7) or in epithelial cell layers of the lung(8,9) or
the pancreas(10) may grow and divide faster if situated at positions of large local
tissue curvature. Cells may also use mechanical stress to adjust their growth rate
to the growth rate of other cells in a tissue sheet.(11) There are different ways in
which a cell can control its physical properties and mechanically communicate
with its environment depending on its state of differentiation, its type and on the
properties of its environment.(1) For example, a cell can reorganize its cytoskeleton
and thereby change its shape and mechanical rigidity. Or, a cell can control the
number, placing and specificity of adhesion molecules which it uses to anchor in a
substrate or to form contacts to its neighbor cells and thereby control the strength
and specificity of its substrate and neighbor-cell contacts.(12)

Recently, more and more mathematical models are developed to explore
potential explanations on the role of biomechanics in the control of morphogenesis
and growth (e.g. Refs. 13–17). Mathematical models can contribute to distinguish
between effects that can be explained purely by physical interactions and those
effects that require (active) regulative changes of the cell behavior or the cell
properties. However, the possible benefit of model simulations largely depend on
in how far they can be experimentally validated.

A number of years ago the validation of predictions from mathematical mod-
els of multicellular systems was very difficult—if not impossible. This situation
is rapidly improving now. The experimental abilities to collect information on the
cell-biophysical, cell-biological and cell-kinetic properties have improved signifi-
cantly in the last years. For example, the cell proliferation (cell division) activity
can be determined by the markers Ki-67,(18) BrdU or Thymidin,(19) the apoptosis
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(programmed cell death) by Tunnel assay,(18,20) the diffusion constant of cells
by tracking labeled cells,(21) the elastic modulus of cells by optical stretchers,(22)

atomic force microscopy (AFM),(23) or acoustic microscopy,(24) the strength of cell-
cell and cell/substrate adhesion by AFM.(25,26) Recent cytometric (e.g. Ref. 27 and
Refs. therein) and reconstruction methods of 3d tissues from 2d serial sections(28)

provide the conditions to quantify experimentally obtained spatial-temporal label-
ing pattern in tissues and tissue morphotypes necessary for the comparison to the
results of mathematical models. Moreover the technical abilities are crossing the
borders between different disciplines. For example, methods that previously have
only been used by cell-biologists such as cell-cycle labeling are now also used by
other disciplines such as engineering science and combined with measurements on
the mechanical stress within cell layers to identify the active and passive properties
within multi-cellular systems.(7) This will facilitate to construct mathematical cell
and tissue models that vice versa help to analyze further biological experiments
given these models properly represent the relevant cell parameters. On the level of
an individual cell these are for example cell-biological parameters such as the cycle
time, the control of the cell cycle passage, apoptosis (programmed cell death) and
cell-biophysical parameters such as cell material parameters, cell shape, and the
strength and specificity of cell-cell and cell-substrate adhesion. The advantage of
mathematical models is that they permit to test hypotheses free from uncontrolled
or unknown experimental influences and to make predictions that help to select
between competing hypotheses.

In this paper we illustrate by in-silico experiments that a number of experi-
mental observations in different multi-cellular systems can largely be explained
based on a description of cells mainly as physical objects capable of pursuing
only a minimum of additional actions. The basic model-building strategy follows
the same spirit as traffic simulations by agent based physical models:(29) starting
with very simple models successively more complex regulation processes on the
cellular and sub-cellular level are included. As long as the rules that underlie
cell regulation and differentiation have not been understood, the predictive power
of simulations of multi-cellular systems is limited. However, the point at which
the experimental system behavior starts to deviate from the simulated behav-
ior demarcates where cells might have changed their properties by regulation or
differentiation; in so far simulations may help to find such points.

We partly review some recent work, and partly present complementary and
new material. The basic model unit in most of our studies is an individual cell.
In most biological examples we consider a model type in which each cell is
parameterized by characteristic measurable cell-biological and cell-biophysical
quantities. These models base upon a conceptual approach published some years
ago.(30) We complement these by examples where each cell is considered as a
point object on a lattice. Recent reviews on individual-based cell models, most
of them defined on a lattice (cellular automata) can be found in Refs. 27, 31–35.
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The multi-cellular systems we consider in this paper are 1. monolayers,(36–39) 2.
multi-cellular spheroids(6,40–42) and 3. one-layered tissue structures in which the
layer is not attached to a fixed surface; examples are multicellular structures in
early development and epithelial interfaces.

By growing monolayers we here mean cell populations growing on a flat sub-
strate. Depending on the cell type and the substrate used they may form a sparse dis-
tribution of cells, a one-cell-thick layer attached to the substrate, a quasi-monolayer
in which some cells do not have contact to the substrate anymore or even multi-
layered structures. Besides the growth kinetics and the morphotype (the spatial dis-
tribution) also the critical surface dynamics of monolayers have been explored.(36)

If those cell types that can grow independent of substrate contact are exposed
to liquid medium they form multi-cellular spheroidal aggregates.

Examples for the formation of highly organized one-layered structures are
blastula formation and gastrulation in species that form a one-cell-thick blastula
such as sea urchin and synapta digita,(43,44) and epithelial tissues that form a one-
cell-thick interface such as intestinal crypts,(45–47) the lung(8) or the basal layer of
the mucosa.(48)

The paper is organized as follows. We firstly present selected examples on
growing unstructured cell populations. This part is subdivided in growing mono-
layers and multi-cellular spheroids. For growing monolayers we subsume findings
on their growth kinetics (i.e., how the population size and their spatial spread
evolves in time), the morphotype of the expanding cell populations and the critical
surface dynamics of expanding cell populations. In the same section we outline
how the morphotype of a cell clone changes if it grows in a co-culture of (non-
dividing) cells which we believe can easily be tested by experiments. As a step
towards how invasive pattern may form, we study how mutations that affect the
model parameters such as the length of the cell cycle time, the probability of
programmed cell death (apoptosis) or the sensitivity towards contact inhibition
of growth may affect the multicellular phenotype. Mutations have been shown
to cause genetic heterogeneity of cells in tumors and of micrometastases.(49) The
subsection is followed by a model of growing cell populations in liquid suspension
i.e., of cell populations not attached to any substrate. The multi-cellular aggregates
formed under this condition are called “multi-cellular spheroids.” The second main
section focuses on a simulated scenario in early development and presents results
on the modeling of buckling and folding events in one-layered tissues. Finally we
close the paper by a summary and a discussion.

2. MONOLAYERS AND MULTICELLULAR SPHEROIDS

Within the last decades biological in-vitro (as opposed to in-vivo, i.e., in the
living organism) models of in-situ tumors and micrometastasis have been devel-
oped and extensively studied in order to characterize their growth dynamics under
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various conditions.(40,41) Commonly used techniques are monolayer cultures where
cells grow on a Petri dish coated with proteins and liquid media containing speci-
fied quantities of small molecules such as salts, glucose, amino acids, and vitamins,
and furthermore growth factors and transferrin, which carries iron into cells.(50−53)

In-vitro cell cultures are important experimental tools in understanding and
analyzing the mechanisms involved in the growth of cell populations. Treatment
strategies for a number of diseases may be tested in-vitro with respect to their effi-
ciency and their toxicity before being applied to in-vivo systems. This in particular
involves testing drug, radiation, and chemotherapy strategies against cancer.(42)

Their advantage over in-vivo systems is that they can easily be manipulated.
Many types of normal animal cells need anchorage to grow and proliferate.

When normal fibroblasts or epithelial cells, for example, are cultured in suspension
they round off and usually do not divide.(54) In order to permit division they need to
be anchored in the substrate by focal contacts. Focal contacts are links of the actin
cytoskeleton by cell-surface matrix receptors (integrins) to extracellular matrix
(ECM) molecules, such as laminin or fibronectin. The binding of ECM molecules
to integrins leads to the local activation of intracellular signaling pathways that can
promote the survival, growth and division of cells. As a consequence normal cells
usually stop division at confluence, i.e., if the cells form a closed monolayer on the
floor of the culture dish. In the next sub-section we will firstly introduce a model to
explain the observed growth pattern on flat substrates. Tumor cells are often able
to grow and divide anchorage-independent. I.e., they can be grown in suspension,
not being attached to a substrate, where they form growing spherical aggregates
(tumor spheroids). Whether cell lines basically grow as monolayers or also expand
perpendicular to the substrate depends on whether certain mechanisms that
control growth and apoptosis work properly. Different cell lines originating from
the same tissue may grow very differently. E.g., while HCT116 cells, a Human
colon carcinoma cell line, grow mainly as a monolayer, WiDr cells, a Human
colon adenocarcinoma cell line, quickly expand into the direction perpendicular
to the plane of the substrate. After the study of perfect (one-cell-thick) monolayers
we explore the effect of simulated knockouts of growth mechanisms and show that
the phenotype in this case can dramatically change. This is followed by co-culture
simulations of cell clones growing in an environment of non-dividing cells, the
critical surface dynamics generated by cells at the monolayer border and the pos-
sible effects of mutations that affect the kinetic cell parameters on the monolayer
kinetics and phenotype. The second sub-section IIB will focus on tumor spheroids.

2.1. Monolayers

2.1.1. Perfect One-Cell-Thick Monolayers on a Flat Substrate

Bru et al.(36,55) have grown two-dimensional tumor monolayers from C6 rat
astrocyte glioma cells. They observed a linear growth of the tumor diameter L
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Fig. 1. A: Growth kinetics of C6 rat astrocyte-cells in monolayer cultures. Experimental observation
of the diameter L (black dots) and the simulated curve (straight line). Note that there is an initial
exponential growth of L(t). The dotted and dashed line are calculated from the simulated cell population
size N (t). The dashed line denotes

√
Nl/� where � = 0.91 is the optimum packing density of discs

in two-dimensional space and l is the cell diameter. The dashed line would be expected to collapse
with the L(t) if no cell would be in the proliferation cycle and if all cells were packed at maximal
density. The dotted line denotes

√
2Nl/� which would be expected if all cells were immediately before

division hence having twice the volume of a non-proliferating cell. By a least-mean square fit one
finds that the average cell size of the cell population is ≈1.15 l i.e., between the minimum cell size l
and its maximum

√
2l. (For the simulations we used the basic model described in the text.) B: Typical

monolayer growth scenario. Shown are snapshots at N = 10, 100, 250, 1000, 2500 and 12500 cells,
respectively. The lighter the cells the shorter is their cell cycle time. Above a certain monolayer size the
main cell proliferation activity is close to the border while the cell proliferation activity in the interior
is very small. The parameters in this simulation were l = 10 µm (Bru, priv. communic.), τ = 18 h
(Bru, priv. communic.), E = 400 Pa,(56,57) D = 4 × 10−13 cm2/s, δ = 0.2�, ε = εs , (obtained from
�m ≈ 5 × 1014/m2,(25,58) Ws = 25kB T ), FT ≈ 6 × 10−16 J(59,60) (see text for details).

with time t (Fig. 1A) even if the monolayer was covered with additional nutrient
medium. Thus even though all cells were in contact to the nutrient medium the
growth was not exponential but linear. Moreover, although in monolayer cultures
no shortage of glucose (or oxygen) occurs, a characteristic proliferation pattern
forms above a certain population size with the highest proliferation activity close
to the tumor boundary.(55) This suggests that the division of non-boundary cells
may be repressed by a form of contact inhibition. This finding has stimulated us
to study whether the growth kinetics and spatial growth pattern can be explained
by a mechanical form of contact inhibition.

The quantitative information available on growing cell populations is still
insufficient to set up a model that reproduces every minute detail of in-vitro tumors.
Rather we follow the view of Ref. 61 and illustrate how a (mechanistic) model
that is based on characteristic features of individual cells is capable of giving at
least a partial explanation of the growth dynamics of in-vitro tumors. Our model
approximates each cell by an elastic, sticky particle of limited compressibility
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and deformability capable of active migration, growth and division; each model
parameter can in principle be experimentally determined.

The major model features and assumptions are summarized below (additional
technical details can be found in Appendix A, alternative model variants are
discussed below).

The basic model:

(A1) Since isolated cells in cultures or suspensions often have a spherical
shape we assume each model cell to be spherical directly after cell
division. Cells that do not continue to grow and divide (“to proliferate”)
are assumed to maintain the spherical shape. Proliferating cells grow
and deform into a dumb-bell during mitosis until they divide into two
spherical daughter cells of equal size (Fig. 2(A)). The initial orientation
of the dumb-bell axis is random within the plane of the substrate (see
also assumption A4 for further explanation).

(A2) Cells in contact can form adhesive bonds. With decreasing distance
between cell centers (e.g., upon compression) the contact area between
them increases and with it, the number of adhesive bonds, resulting
in an increasing attractive interaction. On the other hand, if cells in
isolation are spherical, an increasing contact area is accompanied by
an increasing deformation which results in a repulsive interaction. Fur-
thermore cells under physiological conditions have only a moderate
compressibility. We model the combination of attractive and repulsive
interactions by the interaction energy (Fig. 2(C)):

Vi j =

⎧
⎪⎨

⎪⎩

ε
(

2d̃i j (t)
δ

+
√

εs

ε

)2
− εs if − δ ≤ d̃i j (t) ≤ 0

∞ if d̃i j < −δ

0 otherwise.

(1)

d̃i j = di j − (Ri + R j ) where di j denotes the distance between the near-
est spheres of the neighboring dumb-bells i, j (here, Ri = R j = R).
εs ≈ �m Ai j Ws is the cell-cell adhesion energy. Ws is the energy of a
single membrane receptor bond of adjacent cells, Ai j the contact area
between cells i , j and �m denotes the density of cell-cell adhesion re-
ceptors in the cell membrane. The term ε(. . .) in the first line of Eq. (1)
represents the elastic contributions. ε ≈ Elδ2/8 includes the cell elas-
tic modulus E of the cell, and δ/2 is the range over which a cell may be
stretched or compressed. The cell diameter of a cell immediately after
division is l ≈ 2R (while we define that the cell has an incompressible
core with radius R − δ/2, see Fig. 2).

(A3) In the absence of chemotactic signals, isolated cells in suspension or
culture medium have been observed to perform a random walk.(21,60)
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Fig. 2. A and B: Illustration of the two used cell division algorithms, C: Interaction potential energy
between the nearest spheres of the neighboring dumb-bells i, j (here, Ri = R j = R). A: During
cell division, a cell deforms from a perfect sphere into a dumb-bell in small steps δa � l. The
pictures show the incompressible core of the cells i.e. the cells in their maximal compressed state. Each
incompressible dumb-bell cores has the radius R − δ/2 and the size (diameter) l − δ. An uncompressed
and undeformed cell directly after division is spherical with diameter l = 2R. Our algorithm mimics
a linear increase of cell mass during the passage of a cell through the cell cycle in agreement with
the experimental observations.(62) B: Different from the division algorithm in (A) the radius is first
increased from R → 21/3 R to mimic the doubling of the cell volume followed by a cell deformation
into dumb-bells at constant volume. C: Interaction potential energy between the nearest spheres of the
neighboring dumb-bells i, j (here, Ri = R j = R). The shape of Vi j reflects the limited compressibility
and deformability of the cells and contains direct cell-cell adhesion. Three different models are shown,
a harmonic-like interaction energy, a Hertz-like approach(63) and the Johnson-Kendall-Roberts (JKR)-
model (e.g. Refs. 64–66) of adhesive, deformable, isotropic and homogeneous elastic spheres. Within a
realistic range for the effective energy FT that models the migration activity of the cells and of the Young
modulus within a range of 300–600 Pa, however, the approaches result in very similar shapes for the
interaction energy for di j / l ≤ 1. (For embryonic cells Beysens et al.(59) found FT ≈ 2 – 8 × 10−15 J ,
experiments by Schienbein et al.(60) with granulocytes suggest that FT =∼10−17 J.) For di j > l the
JKR-model shows a hysteresis behavior if cells detach (red arrows in the upper figure where detachment
occurs dc

i j = l). For illustration purposes the Hertz I/Hertz II-potentials and the harmonic potential I
(where εs = ε ≈ −7.5 FT ) were lowered by −6 (note that the dynamics is determined by the energy
differences only). The other parameters were the same for the Hertz II and the JKR interaction energy
curves. For the Hertz I-curve the surface tension was assumed to be 20% above those for the Hertz
I and JKR curves (we used an surface receptor density of 1015 m−2(25,58) and a binding strength of
Ws = 15 – 25 kB T for each receptor).

We model this by a stochastic component in the movement of each cell
which we characterize by the cell diffusion constant D.

(A4) While in mechanical contact to other cells, proliferating cells exert a
pressure on their neighbors. The neighboring cells try to escape this
pressure by moving against the friction caused by the other neighbor
cells and extracellular material (e.g. matrix). The stronger the friction,
the slower the cells move. We simulate a friction-dominated stochastic
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dynamics driven by physical interactions by the standard Metropolis
algorithm(67) with a proper definition of timescales (e.g. Refs. 30, 68,
69). Note that the movement may be active or passive or both. The
observations in Ref. 7, however, suggest that on a flat substrate cells
migrate rather than being pushed by dividing cells. The algorithm uses
the interaction energy (A2, Eq. (1), see-also Fig. 2C), that can directly
be related to forces. In our two-dimensional monolayer simulations we
perform on average one translation trial of size ξ and one orientation
trial of angle δα per cell within each time period �t and accept it with
probability Pa = 1 if �V tot = V tot

t+�t − V tot
t < 0 and with probability

Pa = exp(−�V tot/FT ) otherwise. Here, V tot = ∑N
i< j Vi j summarizes

the attractive and repulsive cell-cell interactions, Vi j denotes the in-
teraction between cells i and j (Fig. 2B). Every ng 	 1 translation
and orientation trials, one growth trial of size δa uniformly distributed
in [0, δamax) is performed. FT is a reference energy(59) analogous to
the thermal energy kB T in fluids or gases (T : temperature, kB : Boltz-
mann const.). α is the rotation angle of the dumb-bell axis in the sub-
strate plane. (For our three-dimensional simulations in Figs. 3, 5, and
9 we considered rotations around three space-fixed axes by an angles
δαi with i = 1, 2, 3 according to the algorithm of Barker and Watts
(see Ref. 70).) ξ and δα are random variables distributed uniformly in
the intervals ξ ∈ [0, ξmax) and δα ∈ (−δαmax, δαmax) respectively. Each
translation step trial is performed into a random direction. ξmax � l,
δαmax � π . In order to use the Monte Carlo method for kinetic simu-
lations we have defined time scales for each of the processes growth,
division, migration and rotation. Consider migration as an example.
Firstly we build a list containing all cells at a certain point of time to in-
sure that no cell is omitted for a migration trial. We successively choose
all cells from the list (in random order) and perform one migration trial
per cell. We perform this procedure consisting of 1. setting up the list
and 2. performing precisely one migration trial per cell ng-times in time
intervals of �t before performing a growth or division trial for each
cell in the same way (building a list, performing one trial per cell). The
size and frequency of the migration and growth (and division) trials
is chosen in such a way, that the diffusion constant and the cycle time
of isolated cells are correctly reproduced so that a simulation mimics
a realistic time development of the multicellular configuration (further
technical details on how the step size variables ξmax and δamax as well
as ng are related to measurable quantities such as the cycle time τ and
the diffusion constant D can be found in Appendix A). The use of the
Monte Carlo method is motivated by the observation that after each
growth step all cells move to relax the configuration at least into a local
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equilibrium;(30) the procedure used here corresponds to the numeri-
cal integration of a master equation for the time development of the
multi-cellular configuration (compare Ref. 71).

(A5) We assume an average intrinsic cell cycle time to be influenced at the
level of individual cells by nutrients, regulatory factors and mechanical
stress. We denote τ as the average intrinsic cell cycle time of an isolated
cell not affected by physical interactions with neighboring cells. We
assume that a cell within a multicellular aggregate can grow only if it
is not deformed or compressed greatly. In our model a growth trial is
accepted only if the cell-cell distance (or more precisely, the distance
between the centers of neighboring dumb-bells) doesn’t fall below the
minimal distance dmin

i j = 2R − δ. Consequently the observed cell cycle
time of deformed cells is typically larger than the intrinsic cycle time.

(A6) We start our simulation with a single cell.

It is not necessary to model glucose or oxygen explicitly, since in the cultured
monolayer experiments by Bru et al.(36) nutrients are equally accessible to all cells.

In order to relate the numbers on the computer to “real” biological situations
we introduce a length, a time and an energy scale and refer all model parameters
to groupings of these reference scales.

We will firstly present simulation results obtained by simulations with this
model. This is followed by a discussion of a modification of some of the model
assumptions, namely of a modification of the cell division algorithm (A1), of the
cell-cell interaction energy (A2) and of the cell movement algorithm (A4).

Figure 1B shows a typical time series of the monolayer morphology and
a snapshots of the layer-like proliferation pattern for population sizes of N = 1
to N = 12500 cells. The highest proliferation activity is close to the monolayer
boundary while in the interior almost no proliferation can be found in agreement
with the experimental observations. As shown in Fig. 1A the time development of
the monolayer diameter is also in good agreement with the experimental observa-
tions for C6 rat astrocytes.

As long as a monolayer is sufficiently small the number of cells that have to
rearrange if a cell in the monolayer interior grows or divides is small. Accordingly
a growing cell in the monolayer interior is in general able to exert a sufficiently
strong force on its neighbors to push these aside or stimulate them to actively
migrate away. Since glucose and oxygen are not limiting, cells divide everywhere in
the monolayer hence the cell population size grows exponentially fast. The cell
cycle time τ can be experimentally determined from the slope of the growth
curve in the initial exponential growth regime of the cell population size (Fig. 9C
illustrates this for multicellular spheroids). Our model predicts that above a certain
monolayer size cells sufficiently far in the monolayer interior become jammed
between so many surrounding cells that they are neither capable of pushing their
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neighbors aside nor is active migration of surrounding cells fast enough to generate
sufficient space for interior cells to divide. This results in a large stress inside the
monolayer which relaxes toward its boundary only within a small surface layer
where cells are able to divide. In this regime, d L/dt = v ≈ 2�L/τ , where �L is
the width of the proliferation zone (white in Fig. 1B) and τ is the cycle time. Our
explanation is supported by the observation of Bru et al. (priv. comm.) that almost
each cell was in close contact to its neighbors. Alternatively, one may think of
contact inhibition initiated by the interaction of cell surface receptor molecules. In
this case, if cell-cell attraction is present, only the outermost cells of the monolayer
would be able to divide in which case the growth velocity would be 2l/τ ≈ 1 µm/h
(l: cell diameter), i.e. smaller than the value of 5.8 µm/h found by Bru et al.(36)

Note that this case corresponds to the assumption of the Eden model(72) in which
cells occupy sites of a lattice, at most one cell per lattice site, and cell division can
only occur onto adjacent free lattice sites.

Another possible alternative would be that the boundary cells detach from the
monolayer and freely migrate away from the monolayer center. Such a behavior can
be observed for invading tumor cells.(73) In this case the boundary of the monolayer
would not be sharp but disperse. Such a behavior is qualitatively modeled by the
Fischer-KPP-equation in which the local density of cells is assumed to change by
logistic growth and diffusion (e.g. Refs. 74, 75). However, the observed shape of
the cell aggregates by Bru suggests that at least for HT-29 cells(55) and for C6 rat
astrocyte cells (Bru, priv. communication) it is not the migration of detached cells
that is responsible for the observed linear growth regime.

From the above reasoning the expansion velocity can be changed by mech-
anisms that either modify the thickness of the proliferation layer �L or modify
the cell cycle time (τ ). The thickness of the proliferation layer can be increased
in the model by decreasing the Young modulus or the sensitivity for contact in-
hibition by increasing δ (since both lead to an increase of the force necessary to
cause an exceeding of the deformation or compression threshold necessary to stop
cell growth), or increasing the migration activity (for example, by the parameter
ng; since this facilitates cells to escape a critical deformation or compression by
migration).

Model variants:

We have considered a number of model variants to test the robustness of the
findings. (AV1) Instead of modeling the cell deformation and the cell growth (i.e.
the process which increases the cell volume) at the same time by a deformation
of a cell into a dumb-bell with concomitant volume increase as shown in Fig. 2A,
we have tested a cell division algorithm in which the cell remains spherical until
it has doubled its volume (i.e. until it has adopted a diameter of 21/3l) followed by
a deformation into a dumb-bell at constant cell volume Fig. (2B). This division
algorithm originally introduced in Ref. 30 distinguishes between interphase and
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Fig. 3. Comparison between Langevin and Monte Carlo simulation for a selected parameter set. (1)
denotes the cell division algorithm of Fig. 2A, (2) the cell division algorithm in Fig. 2B. A: Population
size N (t). B: Diameter growth L(t). The model parameters were (in both simulations, a JKR-model was
used): l = 10 µm, τ = 18 h, D = 10−11 cm2/s, E = 450 Pa, ν = 0.4, �m = 10−15 /m2, Ws = 25 kB T ,

FT =10−16 J, and for Langevin: γ =0.1 Ns/m, γ (iy)
‖ =γ

(iy)
⊥ ≈ 0.03 Ns/m for y = j, s (details see text).

mitose phase. The interphase subsumes the first three sub-phases, G1, S, G2 of
the cell cycle.(76) During the mitosis phase the mitotic spindle forms and the cell
subsequently divides. This process lasts about 2 h and is much shorter than the
interphase (the total cell cycle length is usually about 24 h).(76) We found that this
modification has (almost) no influence on the growth pattern (Fig. 3).

(AV2) Instead of using a simple harmonic-type interaction energy one may
use other models. If we approximate cells by adhesive, deformable, isotropic
and homogeneous elastic spheres, then suitable models are the classical Hertz-
model(63) extended by a term that takes into account cell-cell adhesion(77,78) or
the Johnson-Kendall-Roberts (JKR)-model (e.g. Refs. 64–66) which takes into
account the hysteresis effect that occurs due to cell elongation if cells are pulled
apart (compare Fig. 2(C) for both models).

In Fig. 2(C) we represent the interaction energy of these two alternative
models that are calculated using the following relations:

(AV2.1): The extended Hertz-type interaction energy is

Vi j = (Ri + R j − di j )
5/2 1

5Ẽi j

√
Ri R j

Ri + R j
+ εs . (2)

The first term on the rhs. models the repulsive, the second term the adhesive
interaction.

Ẽ−1
i j = 3

4

(
1 − σ 2

i

Ei
+ 1 − σ 2

j

E j

)

. (3)

Here, Ei , E j are the elastic moduli of the cells i , j , σi , σ j the Poisson ratios
of the spheres. This takes into account that a homogeneous, isotropic elastic body
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is completely characterized by two independent material constants, for example
the Young modulus and the Poisson ratio.

(AV2.2): The force Fi j ≡ |Fi j (di j )| in the JKR-model has to be calculated
numerically from the implicit equation:

δ = a2

R̃
− [16πγ̂ a/(3Ẽi j )]

1/2, (4)

where

a3 = 2R̃

Ẽi j
[Fi j + 3πγ̂ R̃ + [6πγ̂ R̃Fi j + (3πγ̂ R̃)2)]1/2]. (5)

R̃1− = 1
Ri

+ 1
R j

and di j = Ri + R j − δ (i.e., δ = δi + δ j is the sum of the defor-
mation along the axis between the centers of the closest spheres of the dumb-
bells of cell i and cell j), for Ẽ−1

i j see Eq. (3). γ̃ ≈ �m Ws , where �m ≈ 1015

m−2(25,79) is the density of surface adhesion molecules in the contact zone and
Ws = 15 − 25kB T is the binding energy of a single bond. Eq. (5) has to be
solved implicitly to give a(Fi j ). The value of a is plugged into Eq. (4) to give
δ(a) and, by di j = Ri + R j − δ, di j (a). Plotting Fi j vs. di j yields Fi j (di j ), which
cannot be given explicitly but can be easily fitted by a polynomial (we used a
polynomial of degree three). From this, the JKR-energy Vi j can be investigated
by integration using the Fi j = −(∂Vi j/∂di j )(d(di j )/dxi , d(di j )/dyi , d(di j )/dzi ).
The corresponding interaction energy is shown in Fig. 2C.

As Fig. 2C illustrates, the shape of the different interaction potential energies
is very similar for the harmonic-like, the Hertzian-like, and the JKR-interaction
energy if two cells adhere. The most important difference of the JKR-model to
the Hertz-model is the hysteresis effect that results from the strong attraction:
when two spheres approach each other they spontaneously form a contact area of
finite size at a distance di j = 2R while at limε→0 2R + ε they had no contact. If
they are pulled apart, however, they still have contact at distance limε→0 2R + ε ≤
di j ≤ dc

i j (Fig. 2C). This leads to a marked difference in situations in which cell
detachment becomes important as we show in the next subsection where we
consider a piling up of monolayers.

Eventually, to insure quantitative predictions beyond qualitative tendencies,
it is necessary to measure all cell-biophysical and cell-biological parameters in the
same biological system to determine the cell-cell (and cell-substrate) interaction
energy.

(AV4:) The Metropolis algorithm may be viewed as a numerical integration of
a master equation for the probability density distribution to find the multi-cellular
configuration in a state characterized by the cell variables such as their positions,
orientations, sizes etc.(71) A more intuitive way to model the cell movement may
be by equations of motion for each individual cell. We have studied Langevin-type
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equations of motion for each cell i given by

(
γ + � f

is

)dxi

dt
+

∑

j nn i

� f
i j

(
dxi

dt
− dx j

dt

)

=
N∑

j=1

Fi j + ηi (t). (6)

Here, xi is the position of the center of cell i , γ denotes an effective friction
coefficient that determines the speed of an isolated cell subject to an external
force. We have used the division algorithm in Fig. 2B for which we found that each
proliferating cell spends most of its time in the spherical growth phase (and not in
the dumb-bell-deformation phase). For this reason we neglected rotations of dumb-
bells by a torque. For spherical cells, � f

iy
= γ

(iy)
‖ niyniy + γ

(iy)
⊥ (E − niyniy). Here

y = j denotes cell-cell, and y = s cell-substrate interactions. niy = x y−xi

|x y−xi | . niyniy

here denotes the dyadic product i.e. is a 3 × 3-matrix. γ (iy)
‖ and γ

(iy)
⊥ are the parallel

and perpendicular friction constants, respectively (for example, (E − nisnis) v is
the projection of v onto a plane perpendicular to nis , so if v ⊥ nis , then the friction

is solely given by γ
(cy)
⊥ ). To calculate x y − xi if y = s denotes a flat substrate,

approximate the flat substrate by a sphere and consider the limit where the radius
of the sphere diverges.

In (radially) expanding monolayers the velocity of neighboring cells is very
similar due to the circular monolayer shape so that the friction between cells
may be neglected and hence the sum on the lhs. of Eq. (6) be dropped. The
autocorrelation function of the noise then is 〈ηi

m(t)η j
n(t ′)〉 = Aδi jδmnδ(t − t ′). If

the cell-cell friction is neglected in the autocorrelation function of the noise and if
γ

(is)
⊥ = γ

(is)
‖ , then A = 2(γ + γ

(is)
⊥ )FT . If the cell-cell friction term is not neglected

and if γ
(iy)
⊥ = γ

(iy)
‖ for both, cell-cell (y = j) and cell-substrate-friction (y =

s), then A ≈ 2(γ + γ
(is)
⊥ + ∑

j γ
(i j)
⊥ )FT .(77,80) Note that γ‖ and γ⊥ include the

information about the contact area. By the Stokes friction one can relate the friction
constants with the radius of the contact area and the viscosity of the medium.

Figure 3 shows a comparison between the Metropolis-method and the nu-
merical integration of the Langevin equations (note that the simulations shown in
Fig. 3 are with the cell-cell friction term). The curves show a reasonable agree-
ment. For very small step sizes ξmax (at large ng between subsequent growth trials)
so that |�Vi j | � FT , the curves should collapse.

We also studied the size of clones of successively born cells which be believe
reflects the competition of cells for free space. Our model predicts that nearby cells
in the monolayer can form sub-clones of largely different sizes as a consequence
of a competition of growing and dividing cells for free space (Fig. 4). Those cells
which are under slightly smaller compression can on the average more easily grow
and divide than those cells which are under larger compression. At the monolayer
border, usually the cells at the tip of the border are under smaller compression
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Fig. 4. Subclone sizes. (A) The three clones (red, blue, green) emerged from cells that were born
immediately one after the other. The average clone size is expected to behave as 〈Nk〉 = q(N − k)/Np

where k enumerates all cells in chronological order from k = 1, 2, . . . , Np is the number of proliferating
cells and q is a fit parameter. Np = k in the exponential (k ∝ exp(t/τ )) and Np = kds/d�L/ l, in the
surface growth (k ∝ td ) regime, where ds is the global surface dimension, and d the dimension into
which the tumor is expanding (for monolayers, ds = 1, d = 2). By definition, Nk=1 = N . For the
red, blue and green clone approximately the same clone sizes would be expected while the observed
clone sizes show significant differences. The arrow within the magnification shows a cell at a locally
convex position of the surface that has a larger probability to form a large clone. (B) shows the gliding
average Y ≡ N k,�k Np/(N − k) ≈ q (where we have approximated 〈Nk〉 by N k,�k with �k = 200 and
chosen Np = κ1/2) which fits well the mean-field form although the true sub-clone size shows large
fluctuations in the surface growth regime if the proliferative activity is concentrated at the monolayer
boundary. Here, �L has been defined by ν = d L/dt ≡ 2�L/τ where ν is the expansion velocity of
the monolayer and τ the intrinsic cycle time (set to τ ≈ 19 h). ν can be obtained from L(t) The cell
diameter was assumed to l = 10 µm. The diffusion constant of isolated cells for the curves in Fig. 4(B),
were D = 1.4 × 10−13 cm2/s (blue curve) and D = 2 × 10−12 cm2/s (black curve), respectively. (For
comparison: for the monolayer growth curve in Fig. 1A, D ≈ 4 × 10−13 cm2/s. The other parameters
are as in Fig. 1.)

(compare the arrow in the magnification of Fig. 4A) which is why their average
cycle time length is usually smaller than the cycle time length of cells at concave
positions of the border so that their clones usually out-compete clones which are
formed by cells at convex border positions. One way to test this observation of
clonal competition found in our computer simulation is to label individual cells
by markers such as BrdU.(19) BrdU is passed on the daughter cells in case a cell
divides.

2.1.2. Piling up of Cells on a Flat Substrate

Many of the epithelial cell populations which are subject to cell-substrate
contact dependent proliferation and anoikis grow in a cell culture to confluent
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cell monolayers(81–83) and simultaneously establish a cell polarity. Epithelial cells
form inner and outer surfaces of the body.(84) Anoikis is a special type of se-
lective programmed cell death that normally occurs if cells loose contact to the
substrate.(85) Confluent cell monolayers form a one-cell-thick layer which covers
the total area of the culture dish. The introduction of different oncogenes into cul-
tured epithelial cell lines affects their signal transduction pathways.(86–88) In cell
lines which normally form cell monolayers this can result in a break down of the
epithelial cell polarity due to changes of the cellular adhesion properties(87) and/or
prevents anoikis interrupting apoptotic signaling pathways.(88) Thereby it may en-
able anchorage independent growth, which is characteristic for many tumor cell
lines.(89,90) The accumulation of such cells at confluence can lead to the formation
of multilayers(87) or to the formation of spheroidal aggregates.(88) To explain these
phenotypic differences between non-transformed and transformed cells biologists
are focusing on the molecular mechanisms to understand how molecular signals
from other cells or the substrate are transduced from the cell surface into the cell
and affect the genetic control of cell proliferation and death.(86–88) As shown for
endothelial cells, another critical determinant that switches cells from life to death
and between proliferation and quiescence may be cell shape.(91) Epithelial cells
are also able to sense changes within the local micro-environment by sensing the
degree of their own extension or compression, and thereby couple shape changes
to cell migration and proliferation.(92) Hence, some of the effects of cell contact
formation and release during epithelial organization can be directly attributed to
the physical interaction between individual cells and their neighbors, and between
individual cells and their substrate.(77)

Cells in the interior of the monolayer experience a force from surrounding
proliferating cells. Since monolayers are not completely flat but show small spa-
tial fluctuations as a consequence of the stochastic growth and re-arrangement
processes the force that an interior cell experiences from its surrounding cells
is not completely parallel to the substrate. If the outward pointing force com-
ponent of the total force that is exerted on a cell perpendicular to the plane of
the monolayer overcomes the cell-substrate adhesion strength then cells may be
pushed out of the layer (Fig. 5). This occurs in particular for cell lines which are
either insensitive to contact inhibition or for which contact inhibition is completely
switched off. Usually cells that loose substrate contact do not proliferate anymore
(anchorage-dependent proliferation) and after a period of several hours undergo
apoptosis (anchorage-dependent apoptosis: anoikis). In Fig. 5 we study successive
knock-outs of (I), contact inhibition, (II). anchorage-dependent proliferation in
addition to I and (III) anoikis in addition to II. As long as anoikis is still present
a quasi-monolayer is maintained and again a surface growth regime with L ∝ t
forms. Only if anoikis fails to work a significant piling up perpendicular to the
plane of the substrate occurs (Fig. 5).
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I

II

III
(A) (B)

Fig. 5. Destabilization scenario of a monolayer adhered to a flat substrate in simulations by the basic
model using the Hertz-type interaction AV2.1 (A) and the JKR-interaction energy AV2.2 (B). The
color is a relative measure of how far the cells are above the substrate (blue: direct substrate contact,
red: far above the substrate). The numbers (I), (II), (III) denote knocked-out control mechanisms,
namely (I) contact inhibition: a cell in which this mechanism is knocked out is assumed to not stop
to proliferate even if a critical compression or deformation threshold is overcome, (II) in addition to
(I), anchorage-dependent proliferation: if this mechanism is absent cells do not stop to proliferate if
they have lost substrate contact, and (III) in addition to (II), anchorage-dependent apoptosis (anoikis):
if this mechanism is knocked out cells do not undergo apoptosis after they lost substrate contact while
cells under normal control die a few hours after loss of substrate contact. (The same scenario have
been found in a slightly different model in which the cell migration and the change of cell volume
both have been modeled by a Langevin equation and a Hertzian-interaction energy have been used; for
details, see Ref. 77.) The parameters in the Hertz and the JKR-model are the same. As the consequence
of the hysteresis in the JKR-interaction energy, much less cells detach from the substrate for the
JRK-interaction than for the Hertz-type, interaction. For growth in perfect one-cell-thick monolayers
(uppermost case) the differences are negligible. The parameters are: l = 10 µm, τ = 18 h, E = 450 Pa,
µ = 0.4, D = 1.27 × 1011 cm2/s, �m = 1015/m2, Ws = 25kB T , FT = 10−16 J.

For the simulated knock-outs we used both, an extended Hertz-model (Eq. (2))
and the JKR-model (Eqs. (4) and (5)). The qualitative scenario is the same inde-
pendently of whether the Hertz-or JRK-model is used. The hysteresis that occurs
in the JKR-model, however, leads to a delay in the detachment process of cells
from the substrate compared to the extended Hertz-model (Fig. 5B). The quali-
tative results in our simulations are very robust against changes of model details
(e.g. Ref. 77). Cells may also die by apoptosis before they are pushed out of the
uppermost cell layer. However, as long as apoptosis does not affect cells in the
proliferating rim the monolayer growth kinetics remains unaffected by apoptosis
and as shown in Fig. 1(A).(66)
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2.1.3. Co-Cultures

Tumors in-vivo do usually not grow in a liquid environment but in an en-
vironment of soft tissue, organs, or at epithelial interfaces. In order to invade
the surrounding tissue tumor cells usually release degradative enzymes, notably
matrix metalloproteinases and change the expression and localization of certain
proteins. E-cadherin, a cell surface adhesion receptor involved in cell-cell con-
tacts, has been found to disappear from cells at the edge of colon carcinoma.
Subsequently β-catenin migrates from the cytoplasm to the cell nucleus which
leads to an increase of cell proliferation.(73)

The situation of tumor invasion may to some extend be mimicked in co-
culture experiments by seeding cell clones in an environment of another cell-type
which we briefly illustrate here. A detailed analysis including a sensitivity analysis
of different model parameters will be presented elsewhere (Drasdo and Höhme, in
preparation). We here focus on the situation before the cell switches to the above
described mechanism on for invasion. Our simulations predict that in a co-culture
situation a characteristic spatial inhomogeneous pattern may form that is triggered
by the proposed form of biomechanical growth inhibition (Fig. 6(B) and (C)). In
the simulations a dividing cell clone was initially embedded in a monolayer of
non-dividing cells with otherwise the same properties as the dividing cell clone.
In our simulations we varied the motility of the embedding cells. If the motility
of the embedding, cells is sufficiently large an approximately circular expanding
clone forms while for less motile environmental cells an inhomogeneous, finger-
shaped structure forms. The finger-shaped structure is a consequence of density

(C)(B)(A)

Fig. 6. Morphologies of a monoclone growing as a perfect monolayer in (A) suspension, (B), (C)
co-culture. In (B), the motility of the embedding cells (light blue) is twenty times larger than in (C).
The colors in the right half of the pictures indicate the proliferative activity; the lighter the cells the
shorter is their cycle time. While the morphotype of the expanding clone in (A) is circular, in (B) is
compact and largely circular, it is finger-like in (C). Note that in monolayer cultures almost all cells
have a good access to glucose. (For the expanding cell clone we here used the JKR-model with the
same parameters as in Fig. 5. For the embedding cells we assumed an initial distance of � on a square
lattice, no cell-cell adhesion, and D = 1.27 × 10−11 cm2/s in (B) and D = 6 × 10−13 cm2/s in (C).)
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fluctuations of the embedding cells in that the growing enclosed monoclone forms
fingers into the direction where the density of the environmental cells is locally
smaller. If the embedding cells are very motile they migrate to escape the out-
growing sprouts. (The situation is expected to be similar if the embedding cells are
replaced by granular matter.) Note, however, that at a certain degree of compres-
sion, apoptosis may be triggered. In case the embedding cells are more sensitive
to pressure and die at a smaller pressure than the growing expanding clone then
the growing cells eventually fill the whole space left by the embedding cells.

2.1.4. Border Fluctuations

As shown in Fig. 1, our computer simulations with the off-lattice model were
able to explain the growth kinetics (L(t)) of the experiments by Bru et al.(36)

Besides the growth kinetics Bru et al. studied the critical boundary properties
of expanding monoclones by applying theoretical concepts from non-equilibrium
statistical physics used to classify surface growth phenomena into “universality
classes.” A universality class in homogeneous isotropic interface growth of solids
is usually characterized by three critical exponents, the growth exponent β, the
roughness exponent α and the dynamic exponent z.(93) The exponents are related
by the scaling relation z = α/β hence only two exponents are independent and
need to be measured. Bru et al. suggest that monolayer growth belong to the
Molecular-Beam-Epitaxy (MBE) universality class. MBE is characterized by a
“raining” or deposition of particles on a surface. The particles then diffuse along
the surface. The critical surface dynamics have extensively been studied for Eden
clusters which have been proposed as a simple model of tumor growth.(72) The
universality class of Eden clusters is believed be the Kadar–Parisi–Zhang (KPZ)
universality class (e.g. Refs. 93–95 and Refs. therein), hence Eden clusters do
not belong to the MBE universality class. KPZ-growth is characterized by growth
along the local normal of the surface which is stabilized by surface tension.
For a one-dimensional surface the KPZ-critical exponents are α = 0.5, β = 1/3
and z = 3/2 while the MBE-critical exponents are α = 3/2, β = 3/8 and z = 4.
Usually, the Eden-model has been studied in geometries in which the interface is
flat and not circular as for two-dimensional monolayers. In order to systematically
study the critical exponents of growing monolayers of circular shape we transfer the
growth process onto a random lattice in which a systematic analysis of the critical
growth properties including an average over many realizations of the growth
process is feasible. We have chosen a random lattice since on regular lattices we
have observed lattice artifacts in some parameter regions.(96) In off-lattice models,
the too long simulation time does currently not permit a sensitivity analyses over
wide parameter ranges or the formation of averages over many realizations of the
growth process.
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The cellular automaton model is constructed in such a way that it shows
the same growth kinetics as the lattice-free approach for expanding monolayers
shown in Fig. 1A. In order to avoid simulation artifacts from lattice symmetries
we used a Delauney triangulation which can best be understood from its dual
graph, a Voronoi tesselation. Assume a random distribution of points in space.
Within a Voronoi tesselation to each point that region in space is assigned that
is closer to this point that to any other point. The Delauney triangulation results
from linking each point to its neighbor points within the Voronoi tesselation. For a
random distribution of points the Delauney tesselation is a random lattice with on
the average six links to neighbor points. We assume each site on a Delauney lattice
can at most be occupied by one cell. The average area which is assigned to a point
(= cell) is l2 which we identify with the average cell area. We start our simulations
with a single cell. Cell division is possible only onto free lattice sites. A cell is able
to divide if and only if the next free lattice site is available at most �L/ l lattice
sites away. One interpretation is that a dividing cell is able to exert a sufficiently
large force to push at most �L/ l cells aside into a certain direction in order to
obtain free space for its division. Another interpretation of this rule is that only
a limited number of cells can be stimulated to migrate away and leave free space
for a dividing cell. It is noteworthy that as �L → ∞ lattice asymmetries in the
growth patterns even disappear on a regular (square) lattice; usually �L/ l ∼ 2 − 3
already gives reasonable results.(97) To determine the growth sites we draw a circle
of radius �L/ l around the dividing cell and shift the neighbor cells of the dividing
cell towards the closest free neighbor site within this circle (shifts by more that
�L/ l lattice positions are prohibited). If a division is permitted we place one
of the daughter cells on the site of the mother cell, and the other daughter cell
on the neighbor site that has become free as a consequence of the previous shift
of neighbor cells. A biological interpretation of the assumption of limited shifts
is that a cycling cell stops in one of the cell cycle check points if the division
would require a shift of surrounding cells over a distance of more than �L/ l cell
diameters. As a consequence, the size of the proliferating rim within the expanding
monolayer cannot exceed �L in case the cells are densely packed (as they are
here) which is why we call �L the proliferation depth. In the lattice model �L it
is a free parameter while in the off-lattice model introduced previously �L is a
consequence of the biomechanical and migration properties of the cells and may
for example be influenced by the cell stiffness and motility. Usually, �L is larger
than the cell diameter ∼ l. In the classical Eden model,(72) however, �L = l since
in this model cells can divide only on empty nearest neighbor sites. The size �L
of the proliferating rim controls the growth velocity in both, the off-lattice and the
cellular automaton model. In computer simulations we found that ν ≈ �L ′/τeff

with τeff = τ/ω being the cell cycle time (results not shown; τ can be measured
from the slope of the growth curve in the exponential growth phase as illustrated
in Fig. 9C for multi-cellular spheroids). Here �L ′/ l ≈ [1 + (�L/ l − 1)0.685]
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and ω = (21/m − 1)m. The parameter m ∈ [0, 1, 2, . . .) controls the shape (and
dispersion) of the cycle time distribution f (τ ′). The dispersion of cycle time
distribution thereby affects the expansion velocity of the monolayer. We define
f (τ ′) by

f (τ ′) = λm
(λmτ ′)m−1

(m − 1)!
exp{−λmτ ′}. (7)

Here we have chosen λm = m so that 〈τ ′〉 = τ = 1 (we refer all times on the
intrinsic cycle time τ and set the expectation value 〈τ ′〉 equal to the intrinsic cycle
time). For m = 1, f (τ ′) is a Poisson distribution and ω = 1. For m → ∞, f (τ ′)
approaches a δ-distribution peaked at τ ′ = τ and ω → ln 2. Hence the larger the
dispersion of the cycle time distribution (by choosing m to be smaller) the smaller
is ω, and the larger are τeff and consequently the expansion velocity v of the
monolayer. At no dispersion the expansion velocity is the smallest.

The factor 0.685 results from the order in which the cell divisions take
place. Although our simulations are in two dimensions, the occurrence of this
factor can best be understood if one considers a one-dimensional segment of a
two-dimensional growing cell population, ideally a one-cell-thick column ranging
from the center of mass of the monolayer until its surface.

If only the outermost cell is able to divide (�L/ l = 1), the increment within
τ is �L . However, if the proliferation depth is �L 	 l then the order of divisions
determines whether a cell is able to divide or not. To see this assume an almost
precise cell cycle length (i.e., a cycle time distribution sharply peaked at τ = 〈τ 〉
which is obtained for m 	 1). Then, if it is the innermost cell that divides first then
all cells closer to the border are still able to divide while, if it is not the innermost
cell that divides first, then the innermost cell cannot divide anymore since this
would require to shift more than �L/ l cells. So even if f (τ ′) →∼ δ(τ ′ − τ ) the
order at which the cells divide matters since for �L > l the cell divisions are not
completely synchronous. The factor ∼0.685 can be calculated from investigating
the expected growth increment from all permutations of choosing the cells in the
proliferative rim for division. Note that the factor ∼0.685 marks the difference
between an asynchronous and a parallel update. To understand this first note, that
since we start each simulation with a single cell, a precise length of the cycle
time would mean that all cells divide at the same point of time. The factor ∼0.685
results from the asynchrony as argued above. For a parallel update this factor would
not be expected; the expansion velocity should instead be ν ≈ �L/τ . (Note that
in a circular geometry the expansion velocity may slightly deviate from this value
due to the boundary curvature which decreases with increasing monolayer size as
1/r with r being the monolayer radius.)

Note also, however, that the factor ∼0.685 may disappear also in asyn-
chronous updates if the choice of how cells are divided is slightly changed. If one



308 Drasdo, Hoehme and Block

would assume that a cell that once has passed the restriction point divides with
probability one that is, if one assumes the decision on whether a cell divides or
not is made immediately after its birth and not when it is chosen for division, then
the dependency of the velocity from the order at which the cell divisions in the
proliferating rim are performed would no longer be expected.

Next we calculated the roughness exponent α and the dynamic exponent z
from the dynamic structure function. The dynamic structure function S(k, t) is
defined by

S(k, t) = 〈h(k, t)h(−k, t)〉, (8)

where h(k, t) is the Fourier-transform of the surface height h(s, t) and 〈. . .〉 the
average over different realizations of the growth process (e.g. Ref. 98). s is here
the arclength as in the paper by Bru.(36) To calculate h(s, t) firstly all border cells
of the monolayer have to be determined. Then one starts with that cell that has
the largest distance from the center of mass (the center of mass is defined by
r̄ = (1/N )

∑N
i=1 x i and moves by right turns in counter-clock direction along the

monolayer border. h(s, t) is the distance of the border cells from the center of
mass. Alternatively we have used the polar angle ϕ (i.e., studied h(ϕ, t)) but did
not find noteworthy differences in the simulation results. Here,

h(k, t) = 1

Ld/2

∑

s

[h(s, t) − h] exp(iks)�s, (9)

where the factor �s takes into account that the arclength increases with time
(otherwise the dynamic structure function-curves do not collapse for different
times since in a circular geometry the total arclength increases with time). For
self-affine surfaces in absence of any critical length-scale the dynamic structure
function S(k, t) has the Family-Vicsek scaling form:(99)

S(k, t) = κ−(2α+1)ŝ(kt1/z), (10)

The result shows that α = 0.5 (Fig. 7A) and z = 3/2 (Fig. 7B) as would
be expected for a KPZ behavior and disagrees with MBE.(96) We are currently
exploring the effect of fast cell migration on the scaling behavior. However, we
like to note that a comment by Buceta and Galeano(100) questions the interpretation
of the experimental findings on the dynamic structure function by Bru et al.(36)

namely, that the findings indicate a MBE-behavior. We have validated that a small
random movement of

√
〈(δr )2〉 ∼ O(l) along the cluster border did not modify the

observed exponents(96) (this is the typical distance that a cell travels on the scale
of the cycle time in Ref. 55).
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Fig. 7. (A) Dynamic structure function S(k, t) at t = 60, 100, 120 (in units of the cycle time τ (96)).
The dashed line has a decay of −(2α + 1) = −2. This suggests α = 0.5 as would be expected from
the KPZ universality class. The inset shows the contour of the expanding cell population in a single
realization of the growth process. The classification of the universality class furthermore requires
to determine either the growth exponent β or the dynamic exponent z. We rescaled the axes due to
S(k, t) → S(k, t)k2α+1 and k → kt1/z with the choices α = 0.5 and z = 3/2 (B). The collapse of the
data for small k in the rectangle at z = 3/2 is characteristic for KPZ; the growth exponent can then
be calculated from the scaling relation β = α/z and is β = 1/3. Note that these results comply with
results by Moro(94) obtained with the classical Eden model on a square lattice in 1 + 1 dimensions in
a geometry in which the initial state is a flat interface. The parameters were m = 1, �L = 1.

2.1.5. Mutations

So far we assumed that all cells have the same properties and show only
stochastic differences for example, in the duration of their cell cycle, the direction
of active random migration and the direction of active cell division. We find that
the qualitative growth kinetics under these conditions is as depicted in Fig. 1
and insensitive to model details. If cells do not detach from the cell population
the initial growth is exponential for the population size and also approximately
for the diameter and crosses over into a linear expansion of the diameter and a
power-law-like growth N ∝ td for the population size.

However, aggressive tumors are characterized by their invasiveness which
usually were preceded by mutations. Such mutations are known to cause genetic
heterogeneity of the cells in a tumor which is subsequently reflected by the hetero-
geneity of the micrometastases.(49) The capability to invade a surrounding tissue
can have many different origins; these include a change of cell-cell and cell-
substrate adhesion properties,(101) a change of the migration phenotype(102) or a
loss of growth and apoptosis control(18) often, combinations of different changes
are involved. For example NIH3T3-HER2 cells are known to suffer from a lim-
itation of cell cycle and apoptosis control;(18) in this cell line an oncogene that
encodes HER2/neu, a variant of the HER2-receptor, is expressed. HER2/neu trans-
duces growth-promoting and apoptosis-suppressing signals and have been found
in several cancers; different from its normal variant it stimulates proliferation
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already at very small extracellular concentrations of the growth factor EGF. Be-
sides invasiveness these mechanisms are able to modify the fraction of proliferating
cells and thereby the growth kinetics.

In this subsection we consider the possible effect of mutations that affect
the model parameters in the previously introduced cellular automaton model on
a Delauney lattice. As an illustration of the potential effect of such a change
we consider mutations that with equal probability either increase or decrease the
cycle time length by �τ/τ ∈ [−a, a] (Fig. 8). This situation could be given if
cells reduce the time they spend in the interphase as a consequence of mutations.
However, we found the same qualitative behavior if mutations affect the probability

Fig. 8. (A) Radius of gyration if mutations occur that affect the length of the cell cycle. The radius of

gyration is defined by Rgyr =
√

(1/N )
∑N

i=1 (xi − x̄)2 where x̄ = (1/N )
∑N

i=1 xi denotes the center

of mass of the monolayer. If the monolayer forms a perfect disc, Rgyr = r/
√

2 with r being the radius
of the monolayer. i: For the reference curve, we assumed �L/ l = 1, γ = 0 (no apoptosis), a = 0 (no
mutations), �τsubst = 0 (the cycle time is a random Poissonian distributed variable independent of the
extracellular environment (substrate)). For the other curves only the parameter that has been changed
with respect to the reference curve is given in the legend. ii: γ = 0.1 (dotted) means that cells die with
an apoptosis rate of 0.1/τ , iii: �τsubst = 0.4 (dashed) means that the average cycle time depends on
the spatial position of a cell by a value of at most �τsubst = 0.4 τ (for details, see text). iv: Further we
considered mutations in the growth rate �τ/τ by at most a = 0.05 (dots linked by a dashed line), v:
apoptosis with rate γ = 0.1 (as in (ii)) but with mutations in the apoptosis rate γ of at most 0.4 (full
line), and finally, vi: a proliferation layer thickness of �L/ l = 6. We find that apoptosis reduces the
expansion velocity (∝ d Rgyr/dt) (see (ii)). If mutations that affect the apoptosis rate occur then the
growth curve (see (v)) approaches that without apoptosis (curve (i)) indicating that the apoptosis is
down-regulated to zero. In agreement with this observations, mutations that affect the length of the
cell cycle time leads to a shortening of the cycle time (see (iv)). A larger size of the proliferating rim
increases the expansion velocity (see (vi)). The expansion velocity is unaffected by frozen disorder
(see (iii)). (B) shows the proliferation pattern for �L/ l = 6 ((vi) in (A), the reference case �L/ l = 1
is used in Fig. 7), (C) shows the proliferation pattern in case of γ = 0.1/τ , τsubst = 0.4 ((v) in (A)).
Note that cells proliferate also in the interior to fill the empty places that have emerged due to apoptosis
of interior cells. (D) shows the proliferation pattern in case mutations affect the length of the cell
cycle ((iv) in (A); simulation with a = 0.05); note that here the shape of the population has changed
markedly. (In all simulations, m = 1.)
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of cells to undergo apoptosis. To test this we have seeded one progenitor cell
which we assumed to undergo apoptosis with a rate of γ = 0.4/τ and study
how γ evolves in the clone if mutations change γ to γ ± ξ (Fig. 8). ξ here
is a uniformly distributed random number in [0, �γ ] with the constraint that
γ ∈ [0, 1/τ ] (γ > 1/τ would model a decrease of the total cell population size
which should not be considered here). With increasing size of the cell population
the apoptosis rate of the border cells decreases revealing the same principle as
in the former example: Competition leads to a selection on those properties that
eventually lead to an enhancement of the growth of the total cell population. We
have also studied the effect of frozen disorder that affect the expected cell cycle
time of a cell dependent on its spatial position. The biological motivation was
to mimic an inhomogeneous growth environment in which the cell cycle length
depends on the absolute position of the cell in space. The underlying assumption
was that inhomogeneities of the substrate may affect the cell cycle time according
to 〈τ ′(x, y)〉 = (1 ± ξsubst)〈τ 〉 where ξsubst ∈ [0,�τsubst] is an uniformly distributed
random number. In our simulations this situation does not affect the average growth
velocity (Fig. 8).

2.2. Multicellular Spheroids

Tumor cells are often able to grow and divide anchorage-independent. I.e.,
they can be grown in suspension, not being attached to a substrate, where they
form growing spherical aggregates (tumor spheroids). In contrast to monolayers,
multicellular spherical aggregates restore morphological and functional features
of the original tissue, that is, they possess a three-dimensional network of cell-to-
cell and cell-to-matrix interactions with a very similar architecture and function
as in vivo.(38) They may contain an extensive extracellular matrix that differs in
the relative amount and assembly from the corresponding monolayer cultures.
Multicellular spheroids were found to be similar to avascular tumors nodules or
microregions of solid in-situ tumors with regard to of the growth kinetics and the
spatial structure. Above a certain tumor size of about 400–600 µm they usually
consist of proliferating (dividing), quiescent (resting), and necrotic (dead) cells. If
the proliferating cells are removed, the quiescent cells re-enter the cell cycle. Cells
undergoing necrosis (as opposed to apoptosis(19)) first swell and then undergo lysis
i.e. fragmentize into pieces. Subsequently, those cells are usually not considered
in the cell count N .

Freyer and Sutherland(103,104) investigated the effect of glucose and oxygen
on spheroid growth of EMT6/Ro mouse mammary carcinoma cell spheroids. They
reported that during the first 3–4 days the number of cells N grew exponentially
fast.(103) After 4 days, N increased only sub-exponentially accompanied by a linear
growth of the tumor diameter L (Fig. 9D). Guided by the Gompertz growth law,
which is characterized by exponential growth in early stages and saturation at later
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Fig. 9. Tumor growth kinetics. (A) Population size N (t) for tumor spheroids in experiments(103,104) in
a log-log plot for different medium glucose c0 and oxygen o0 concentrations. (1): c0, o0 not known,(103)

(2): c0 = 16.5 mM, o0 = 0.28 mM, (3): c0 = 16.5 mM, o0 = 0.07 mM, (4): c0 = 0.08 mM, o0 =
0.28 mM. The time axis for the data (2)–(4) has been rescaled as indicated in the legend to show
all data approach a power-law behavior. (B) Computer simulations to the data sets (2), (4) of Fig. 9A
(full and dashed-dotted lines). Shown is N 1/d vs. t (d = 3 for spheroids). (C) Initial growth of popu-
lation size N for the data sets (2), (4) of Fig. 9A in a lin-log plot (see inset in (B)). (D) Corresponding
plots of the tumor diameter L vs. t for the simulations in Fig. 9B. (E) Simulated spatial growth pat-
terns in a multicellular spheroid. Typical tumor growth scenario from N (t = 0) = 1 until N = 250000
cells in the last picture (shown for a three-dimensional spheroid). The arrows indicate the time direc-
tion. Cells in the outer boundary layer (light blue/grey) form a proliferating rim enclosing a layer of
quiescent (blue) cells and a necrotic core (black), where glucose has been depleted. If the necrotic
cells are removed (as has been done for the computer simulation results in d = 3 of Fig. 9B–D),
the same pattern as observed experimentally forms. The further parameters were: l = 18 µm(103)

T = 22 h,(104) E = 300 Pa,(56,57) � = 1015/m2, D = 1.5 × 10−12 cm2/s, δ = 0.2l, ε = εs (harmonic-
like potential energy), Dgluc = 10−6 cm2/s,(105) γgluc = 7.5–21 mg/(cell h),(106) cells become necrotic
if c(r , t) < 7.2 × 10−6 mg/mm3 and apoptotic, if thier cycle time exceeds 3 × τ .

stages, Freyer and Sutherland(103) concluded that the sub-exponential regime of
N indicates saturation. In reanalyzing that data we found that plots of log(N ) vs.
log(t) (Fig. 9A) and N 1/3 vs. t (Fig. 9B) (t denotes time) indicates a power-law-like
behavior N ∝ t3 rather than a saturation as long as the glucose and oxygen medium
concentrations were not too small. This indicates that curve fitting by purely
phenomenological growth laws, such as the Gompertz law, can be misleading.
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To explore whether the expansion of the tumor spheroid is determined by
nutrient limitation as opposed to a biomechanical form of contact inhibition as for
monolayers, we use the basic model for monolayer and modify it in some points
to fulfill the specific situation of tumor spheroids.

(AMS.1): Within the cell cycle the cell volume increases by a factor of 1.9.
The factor of 1.9 accounts for the volume decrease of the cells with the tumor
diameter L in multicellular spheroids over the experimental observation period, as
observed in Ref. 103 (the assumption that daughter cells are slightly smaller than
their mother cell does not affect the main conclusion of this section).

(AMS.2) We here assume glucose to be the limiting nutrient, and that cells
can only proliferate if the local glucose concentration c(r, t) exceeds a certain
threshold. Freyer and Sutherland(104) also studied the growth of multicellular
spheroids at varying oxygen concentration. The model for this case would be
similar as that for varying glucose concentration which is why we omit it here. For
our model of tumor spheroids in suspension we study situations in which a fixed
glucose concentration c0 is maintained outside the tumor. The glucose can diffuse
with a rate Dgluc and is locally consumed by the cells with a rate γgluc:

∂c(r , t)

∂t
=

∑

i

Dgluc
∂2c(r , t)

∂r2
i

− γgluc�(c(r , t))n(r , t) (11)

n(r , t) is the local density of cells at position r and time t . �(x) = 1 for x > 0
and zero otherwise. We assume that cells become necrotic if the local nutrient
concentration c(r , t) falls below a threshold. As explained above necrotic cells
undergo lysis. We study the case in which lysis is very fast and immediately remove
necrotic cells from the simulation (leaving free space at the positions of cells that
had become necrotic, so necrotic cells are not considered in the cell count N ).
We have also checked the case in which we did not remove the dead cells from
the core and labeled them as “necrotic” i.e., did not take them into account in
calculating the total cell population size of the tumor. For this case we found only
a minor difference as a consequence of the pressure that the dead cells in the core
exert on the viable rim. However, this difference is very small since cells at the
interface between viable rim and necrotic cells cannot divide even if there is free
space available since they lack glucose (and oxygen).

(AMS.3) The initial number of cells from which an individual tumor spheroid
emerges was estimated from the experiments of Freyer and Sutherland to be
N0 ≈ 30–100; we start with N0 = 1 and shift the curve along the time-axis until
a good fit to the experimental data is obtained.

Figure 9D shows a typical time series of the tumor morphology and snapshots
of the layer-like proliferation pattern in tumor spheroids for N ≤ 250000 cells. The
highest proliferation activity is close to the tumor boundary where the local concen-
tration of glucose is the highest, while inside the tumor a necrotic core forms. The
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corresponding time developments of the tumor diameter and population size both
show a very good agreement with the experimental findings (Fig. 9B–D). After an
initially exponential increase of the cell population size (Fig. 9C), N (t)1/3 ∝ t that
is, N (t) ∝ t3 for larger times (Fig. 9B). Note, however, that although the spread of
the curves for N 1/3(t) for the two glucose medium concentrations c0 = 0.8 mM
and c0 = 16 mM is significant (Fig. 9B shows that N 1/3(t) grows much faster for
c0 = 16 mM than for c0 = 0.8 mM) there is almost no spread in the corresponding
L(t)-curves (Fig. 9D shows that L(t) is approximately the same for c0 = 0.8 mM
and c0 = 16 mM). Hence, L(t) is almost unaffected by the 20-fold change of
the glucose medium concentration while N (t) is not. Consequently the glucose
medium concentration in the range 0.8 mM ≤ c0 ≤ 16 mM seem to have no in-
fluence on the growth of the tumor diameter so the growth of the tumor diameter
cannot be determined by glucose control in this case. Since the cell population
size does change with increasing nutrient medium concentration, it is the size of
the necrotic core (but not that of the tumor) that is controlled by c0. The only
mechanism that in our model can be responsible for the control of the tumor size
is the mechanical form of contact inhibition that was already able to explain the
existence of the linear growth regime of the monolayers diameter.

Note that since N ∝ t3 and L ∝ t , N ∝ L3 despite the (cell-free) necrotic
core which seems a contradiction at least for large necrotic core sizes. This pre-
tended contradiction is resolved if one takes into account that the median cell
volume vc decreases with increasing tumor diameter as vc ∝ 1/L .(103) This can
immediately be seen in case the size �L of the viable rim is much smaller than
the tumor diameter L; in this case

vc N ∝ V = 4

3
π

(
r3 − r3

i

) ≈ π L2�L

⇔ N ∝ L3, (12)

where vc ∝ 1/L has been used. Here ri = r − �L is the inner radius of the viable
rim, r = L/2 the tumor radius and V is the tumor volume. So interestingly, the
decrease of the median cell size and the cell loss due to necrosis in the center of
the tumor spheroid occur in such a way, that still N ∝ L3 is maintained.

Individual-based models of multi-cellular spheroids have been studied by
different authors in recent papers. In Ref. 78 cells are assumed to move determin-
istically by being pushed by dividing cells. The authors obtain a good agreement of
their results with the experimental observations of the population size but unfortu-
nately did not consider the tumor diameter. Lattice-based models of tumor spheroid
growth have been considered in Refs. 107–109. Dormann and Deutsch(109) con-
sider a cellular automaton model in which a cell is represented by one lattice site
and include the effect of nutrients. Stott et al.(108) used a generalized Potts model in
which each cell is represented by many lattice sites but did not include the effect
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of nutrients. Both models are two-dimensional and in both models the authors
compare their findings qualitative with the diameter growth observed in Ref. 110
but did not compare to data on the population size. Jiang et al.(107) set up a multi-
scale stochastic Monte-Carlo simulation model also based on the generalized
Potts model. Each cell occupies up to 64 nodes on a three-dimensional lattice. The
authors include an intracellular regulatory Boolean network that controls the G1-S-
phase transition. Their results show a good agreement with the experimental data.
The definition of a time scale in their Monte-Carlo simulation is as in Ref. 68, very
similar as in this paper. However, they did not adjust their biophysical parameters
to experimental observations (for example, the cell-cell and cell-matrix-interaction
strengths are taken from simulations about cell-sorting scenarios of Ref. 111 and
seem to be markedly too large). Nevertheless the models of tumor spheroids are
slowly converging. Off-lattice models as those presented in this paper have the
advantage that they permit the use of the same models for cell-cell and cell-matrix
interactions as experimentalists do to analyze their measurements on cells (for
example,(65)). Lattice models that use many lattice sites to represent an individ-
ual cell permit to represent marked changes of the cell shape that may occur in
the cause of morphogenetic processes. A major challenge will be to combine the
advantages of the off-lattice models with those from the lattice models which use
many sub-cellular lattice sites to represent an individual cell. One way to do this
may be to consider sub-cellular elements in lattice-free space instead of on the lat-
tice as suggested in Ref. 112. Another major challenge will be to set up a hierarchy
of models within a controlled and systematic procedure such that the models on
a coarser spatial scale keep that information of the models on a finer spatial scale
that is necessary to explain multi-cellular phenomena on the coarser scale.

3. TISSUE SHEETS AND EARLY DEVELOPMENT

For tissue cell sheets which are not attached to an underlying solid, immobile
surface and hence can also move in the direction perpendicular to the sheet, the
models have to be extended. Many tissue sheets are one-cell-thick. Examples are
the intestinal mucosa(48) and intestinal crypts,(46,113) glands,(10) and the blastula of
sea urchin and synapta digita.(43,44) Intestinal crypts are one-cell-thick pockets in
the intestinal wall and the cell proliferating machineries responsible for the fast
cell turnover of the intestinal wall. After X-ray-irradiation and during adenoma
formation crypt fission, i.e. folding of a crypt have been observed. Crypt fission,
a process during which one crypt splits into two crypts is also believed to be
responsible for the increase of the crypt population.

Finally, during early development in some species a series of cell division
from the zygote (the fertilized oocyte) eventually leads to a hollow blastula. At a
population size of about 1000 cells gastrulation occurs, an invagination (= inward
budding) from which eventually the digestive tract emerges. In all of these tissues
the orientation of cell division has to insure that a one-cell-thick-layer is main-



316 Drasdo, Hoehme and Block

tained. This includes that in case of an increasing population of cells the extra cell
mass must be placed into the one-cell-thick layer. If growth and division occur
faster than the tissue sheet can be shifted or rearranged to incorporate the extra cells
that emerged from the cell division a characteristic fold by a buckling instability
can occur. The fold can be initiated by random fluctuations as will be illustrated
below for some example. Buckling has separated from the controlled folding that
occurs during gastrulation or physiological crypt fission. Budding and buckling
can be observed in many tissues such as the lung(8,9) and in the branching pattern
of pancreatic cell cultures.(10) In this section we briefly review the Drasdo-Forgacs
model(5) originally introduced in Refs. 68, 114 and present additional and new ma-
terial including precise model parameter definitions that were omitted in the previ-
ous publications; the simulation results obtained with this model provide a potential
explanation of mechanisms underlying the observed folding patterns of Refs. 8, 10.

3.1. Blastulation and Gastrulation

After fertilization of the oocyte of a deuterostome (this class includes chor-
dates, as human, horse etc, and echinoderms, as sea urchin, sea cucumber,
starfish(43)), successive radial cleavage (=cell division without cell mass increase)
leads to the formation of a hollow spherical blastula composed of a polarized
epithelium and enclosing a central cavity, called blastocoel (e.g. Ref. 44). The
increase in cell number follows an exponential growth law until several thousands
of cells have been formed within about one day.(43) Depending on the species con-
sidered, the sphere may either be fully symmetric and one cell thick (this is called
radial holoblastic cleavage and occurs for example in the sea cucumber Synapta
digita) or possess a lower symmetry. The degree of symmetry is determined by the
degree of synchronization of cell division as well as by the orientation of the cell
division planes. In the group of animals that show radial holoblastic cleavage, syn-
chronization may either be perfect (as in the sea cucumber) or in later stages show
differences between the vegetal and animal half as in the sea urchin.(43) In the sea
urchin it has been shown, that timing and placement of each sea urchin cleavage is
independent of preexisting cleavages for the first three cleavages.(115) Two theories
have been offered to explain the formation and expansion of a blastocoel. Dan(116)

hypothetisized, that the motive force of this expansion is the blastocoel itself. As
the blastomeres secrete proteins into the blastocoel, the blastocoel fluid becomes
syrupy. This blastocoel sap absorbs large quantities of water by osmosis, thereby
swelling and putting pressure on the blastomeres to expand outward. Wolpert and
Mercer(117) have proposed, that pressure from the blastocoel is not needed to get
this effect. They emphasize the role of differential adhesiveness between the cells
and the hyaline layer enclosing them. As long, as the cell remains strongly attached
to the hyaline layer, the cells have no alternative but to expand.
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Here we study a simple alternative mechanism to blastocoel formation in the
case of perfect holoblastic cleavage. Such simulations in three dimensions are still
much more time consuming than those of multi-cellular aggregates. Our simula-
tions in this work are therefore two-dimensional, equivalent to considering only
spherically (e.g. sea urchin) or axially symmetric (e.g. sea cucumber) embryos.
However, drosophila, for example forms a hollow ellipsoid embryo with approx-
imately circular cross-section (since two of the principle axes are equal,(118)) and
one axis which is much longer than the other two axes. Thus, all the figures show-
ing cell configurations should be interpreted as two-dimensional projections of
three dimensional structures.

Our model is based on the following assumptions:

(B1) cells remain approximately cuboidal during cleavage(43) (i.e. sharp
bends of the cell membrane that would result in a large bending energy
are disfavored, see Fig. 10). This assumes that cells have a tendency to
adopt a spheroidal shape as cells generally do in isolation under culture
conditions and that deviations from the spheroidal shape are basically
a consequence of the interaction of cells with other cells and the layer
they are attached to, see also Fig. 13.

(B2) cell division proceeds at constant embryo mass (Fig. 12A). As observed
for example in sea urchin and synapta digita(43) each division is oriented

(vi)

(ii)(i)

2
F

1F

(v)

(iv)(iii)

(viii)(vii)

Fig. 10. Schematic sequence of cell divisions (shown in two dimensions) for holoblastic cleavage.
(i)–(iv) illustrate an idealized situation with the daughter cells occupying the original volume of the
zygote. (v) shows a particular daughter cell from the eight-cell stage. Its membrane, at the periphery
and at the center of the cell configuration shown in (iv) has extremely sharp turns. The edges have
very high bending energy and, as a consequence, experience a force �F1 + �F2 opposing the curve,
as indicated in (vi) (forces are shown only for the center). Depending on the mechanical stiffness
of the cell cortex and the bending rigidity of the cell membrane, the rounding of each cell in (iv)
results in a cell configuration similar to (vii) (small stiffness), or, (viii) (large bending stiffness). The
requirement that a change in cell shape preserves the total cell mass and total cell volume, leads to a
net displacement of cell mass away from the center.



318 Drasdo, Hoehme and Block

in such a way that a one-cell-thick structure is maintained (Fig. 12B).
The cell divisions are synchronized, i.e. all cells (or groups of cells) in
the developing organism divide at the same time.

(B3) Cells in the early embryo are polar and, as a consequence of the in-
homogeneous distribution of their adhesion molecules, form cell-cell
contacts in special regions of their membrane, resulting in preferred cell
configurations(44) which we believe correspond to local minima in the
(free) energy. Deviations from preferred cell shapes and configurations
increase the energy. In our model, the energy of a cell configuration
contains the following contributions: (i) A nearest-neighbor interaction
energy that results from the competition between attractive interactions
due to adhesion molecules anchored in the cell membranes, and repul-
sive contributions from the limited cell deformability and compressibil-
ity. For this contribution we assume a similar interaction energy as in
the previous Sec. 2 (see Eq. (14)). (ii) A bending energy that takes into
account the polarity of the cell layer (Eq. (17)). Cells in a one-cell-thick
layer have characteristic apical and basal surfaces. They form contacts
with their neighbors along the lateral part. The preferred geometry of
the layer and the shape of the cells within the layer depend on the lo-
cation of cell adhesion molecules as shown schematically in Fig. 11.
In the computer model we demarcate an individual cell by a circle that
represents the cell in its maximum compressed state. Immediately after
the m-th cell division the radius of the circle is R(m) = R(0)/ f (m)
where f (m) = √

2
m

to take into account that the total embryo mass
(the mass of a cell is identified with the cell area) is constant during
cleavage. During cell division, the circle deforms into a dumb-bell at
constant area (Fig. 12A). The orientation of the dumb-bell axis is as-
sumed to be optimal if it coincides with the tangent to the local radius
of curvature (Fig. 12B). This condition can be translated into the energy
contribution which contains an “optimal” angle. For cell i :

V rot
i = γ

(
αi − α

opt
i

)2
(γ 	 1). (13)

Here, α
opt
i describes the “optimal,” αi the momentary orientation of the cell

axis. αi is optimal if the cell axis is oriented along the tangent to the local radius
of curvature i.e. it is constructed in such a way that the daughter cells of a cell
for which αi = αopt fit well into the tissue sheet (Fig. 12B). For the zygote, the
division plane is arbitrary, in the two-cells-state, cells deform in order to form a
rectangle after the next cell division. We assume that the elastic properties of the
cell layer and the surrounding hyaline layer determine the shape of the nearest-
neighbor interaction energy within δ by the parameter ε according to the energy
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Fig. 11. (a) Preferred individual cell shapes depending on the location of adhesion molecules (black
areas). In this two-dimensional representation, the angle β0 uniquely determines the preferred shape of
the cell and therefore the local spontaneous curvature, cs . Circles with the associated angles demarcate
the simplified shape we use to represent cells in the simulations. The optimal configuration of a sheet
containing only cells with preferred shapes (i) or (iii) is a closed surface with the basal lamina oriented
either towards the interior ((i), β0 < π ), or towards the exterior ((iii) , β0 > π ). (b) Preferred cell shape
(ii) (β0 = 0), results in an optimal configuration with an open, planar cell sheet and equal distance
between the centers of (identical) cells. (c) Deviation from the optimal configuration shown in (b).
For cell type (ii) any bend (characterized by finite local radius of curvature r and deviation angle β)
increases the bending energy. (Here the radius of curvature and the deviation angle is shown only for
cell 2.) Note that for cell type (i) the illustrated configuration is optimal if β j = β0, where j denotes
any cell in the sheet.(68)

contribution

V N N
i j =

⎧
⎨

⎩

ε

([
1 + 2di j −2{Ri +R j }

δ

]2
− 1

)

: Ri + R j − δ ≤ di j ≤ Ri + R j

∞ : otherwise.
(14)

Note that R̂ = R − δ/2 denotes the radius of a cell in its maximally com-
pressed state. In our two-dimensional simplification we assume that the tissue layer
changes its geometry only in the x-y plane while its extension in the z-direction
remains lz = 50 µm (the size of the zygote of sea urchin). Note that we here
assumed that contacts between cells are irreversible in contrast to the interaction
energy in Eq. (1). (The first line of Eq. (1) can be obtained by setting ε = εs in
Eq. (14)). The extension of a cell in the x-direction is (see Fig. 13):

lx = 2Ri + di,i−1 − Ri − Ri−1

2
+ ai + di,i+1 − Ri − Ri+1

2
. (15)

ai is the length of the dumb-bell axis (compare Fig. 12A). For a cell i that adopts
its most favored shape within a cell assembly,
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Fig. 12. (A) Cell division in the simulations. We approximate the observed scenario (i) by the scenario
(ii). The cell deforms by decreasing its instantaneous radius (in its maximally compressed state)
R̂(t) = ζ (t)R̂(ζ (t) < 1) from R̂(at t = 0) → R̂/

√
2(at t = τR) in small steps ξ , where ξ is a uniformly

distributed random number in the interval 0 ≤ ξ ≤ ξmax with ξmax � R̂. The quantity ζ (t) contains
information on the cumulative effect of these small steps. Accordingly, the axis a(t) increases to keep
the total area of the cell constant during one division cycle. The dumbbell shape ensures constant
area. On a time scale larger than the cell cycle time this choice of the cell division algorithm should
not influence the final results. R̂ denotes the radius of a cell in its maximally compressed state,
which corresponds to the minimal distance d0 (see Fig. 13) between the centers of neighboring cells
(immediately after division) or the centers of the nearest circles of neighboring dumb bells (during
cleavage). (B) Determination of the cell division plane in the simulation. The angle α2 (shaded area)
between its axis a(t) (see Fig. 12A) and the x-axis determines the instantaneous orientation of cell 2.
In our two-dimensional model this orientation is optimal if a(t) is tangential (denoted by the dotted
line) to the local radius of curvature r2 constructed according to Fig. 12B. The optimal orientation of
a(t) defines αopt, the optimal value of α2 (see text for further details).

di,i−1 − Ri − Ri−1

2
= di,i+1 − Ri − Ri+1

2
= − δ

4
. (16)

hence its size parallel to its axis is lx = 2Ri + ai − δ/2 = 2R̂i + ai + δ/2 (R̂i

denotes the radius of cell i in the cells’ maximal compressed, R in its relaxed,
interaction-free state). Thus, the true size of a circular cell (ai = 0) depends both
on Ri , its radius in its maximally compressed state and on the range of cell-cell
interactions. Since the cell size shrinks with each cell division, so does δ. After m
cell divisions, δ(m) = δ/ f (m) as R(m). Accordingly, ε is also m-dependent (see
below).

The polarity of the cells in a one-layered tissue and the stiffness of the layer
is modeled by a bending energy according to

V bend = κ

2

N∑

i=1

(
1

ri
− ci

)2

riβi . (17)
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Fig. 13. (A) Sketch of a cell with the hyaline layer. The hyaline layer has a thickness hy = 1 µm. The
linear dimensions of the cell in the x , y and z directions are, respectively, lx , ly and lz . Figure 11 shows
the projection of the cell onto the x-y plane and defines the quantities r and β. (B) Bending rigidity
vs. cell number. The total bending rigidity is the sum of the bending rigidities from the cell layer, κC

and the hyaline layer, κ H . For small N , ly 	 hy hence κC and κ H are determined by the cell size ly .
κC ∝ N−3/2 and κ H ∝ N−1. For large N , κ H → E H hzh3

y/12, κC → 1/
√

N .

κ is the bending rigidity, cs the spontaneous curvature, r j the local radius of
curvature and β j the local angle of curvature. N is the number of cells at a given
point of time. The total energy of a given cell configuration can be summarized to

V tot =
∑

i< j

V N N
i j +

∑

i

V bend
i +

∑

i

V rot
i . (18)

ε and κ can be expressed in terms of the material properties and the geometry
of a cell layer comparing a tissue layer with a continuous, isotropic tissue layer
composed of a cell and a hyaline layer (Fig. 13). The parameters ε then reads

ε = −
(

E H hy
lz

ly
+ EC

ε lz

)
d2

12
. (19)

EH and EC are the Young moduli of the hyaline layer and the cell layer, respectively.
For the definition of the other quantities, see Fig. 13A.

The total tissue-layer bending rigidity is the sum of the bending rigidities for
the cell and the hyaline layer,

κ = κ H + κC . (20)

These are given by

κ H = E H 1

3
hz

(
y3

0 − (y0 − hy)3
)

(21)
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κC = EC 1

3
lz((y0 − hy)3 − (y0 − hy − ly)3), (22)

where y0 denotes the neutral axis of the layer,(119) obtained from the condition that
in equilibrium the total force on the system consisting of hyaline and cell layer is
zero:

y0 =
E H h2

y

2 + EC
(

hyly + l2
y

2

)

E H hy + ECly
. (23)

As in the previous section on unstructured cell populations we introduced a
length, a time and an energy scale and referred all model parameters to groupings of
these reference scales in order to obtain a quantitative description on the computer.
As the length scale we have chosen the size of the zygote and for the time scale the
cycle time τ (=1 h). For the energy scale we again use the “metabolic energy” FT

(here = 10−15 J, close to the value in Ref. 59) and for the multicellular dynamics
we again use the Metropolis algorithm both as in Sec. 2. The method has been
compared to direct integration of stochastic over-damped equations of motion
for related biological problems as those presented here and have been found to
work well as long as the noise influence is not too small compared to directed
forces and provided, the step sizes for migration and orientation changes are
chosen sufficiently small in order to insure a linear velocity-force relation. If the
deterministic forces exerted on a cell are much larger than the random forces that
represent the active random component of cell movement, however, equations of
motion are more appropriate (see for example Refs. 47, 78, 120, 121). Different
from Sec. 2 we assume in most of the simulations shown below that the growth
step size δa ∈ [0, δamax(m)) and the migration step size ξ ∈ [0, ξmax(m)) depend
on the cell size (indicated by m, the number of divisions a cell has performed). The
m-dependencies of the maximum growth and migration step sizes are determined
by the requirements that (i) the cycle time is independent of the cell size and (ii)
the diffusion constant scales as the inverse of the cell size. However, the qualitative
behavior does not change if the latter assumption is dropped.(114) The simulation is
performed as explained in Sec. 2 (compare also Appendix A for further details).
Figure 14 shows a typical simulation run. We started our simulations with a single
zygote and stopped it at the 1024 cells-stage. The zygote divides a number of
times until the embryo becomes a circle, the 2-D analog to a one-cell-thick hollow
blastula. The cell population grows exponentially as observed in experiments(43)

and the perimeter U develops with U ∝ √
N =

√
2t/τ (Fig. 15). We predict that

in the three dimensional-analog the growth of the blastula diameter should be
U ∝ 2t/(6τ ) which results from a small calculation. This may well be tested in
synapta digita since in this animal all cells are of equal size at a given point of
time until N > 1000 (in contrast to sea urchin, where cells of the animal pole
perform more cell divisions than those of the vegetal pole). Above a certain size
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Fig. 14. The evolution of the cellular pattern in the computer simulation for ε(0) = 5 × 10−14 J and
κ(0) = 3.5 × 10−16 Jm. As explained in the text the magnitudes of these parameters vary with the size
of the cells, i.e. with the number of cell divisions, m. The above values refer to the zygote (m = 0). For
the chosen values of ε and κ configurations (i)–(vii) correspond to normal development. A dynamical
instability sets in after the 64-cell stage (vii), which in a spherical embryo would correspond to about
2000 cells. (Due to the uncertainties in the experimental values of ε(0) and κ(0), such an instability
would not necessarily occur at the 2000 cell stage.) With further growth of the cell population the
folding of the blastula becomes more pronounced, as seen in patterns (viii)–(xi). The observed scenario
that follows configuration (vii) is an invagination as shown in (VIII)–(X) (denoted by “*”). At stage
(VIII) 11 cells are assumed to change their cytoskeleton in such a way that the spontaneous curvature
locally becomes negative. From the leftmost cell 1 to the rightmost cell 11 the spontaneous curvatures
follow the pattern c1, c2, c3, c4, c5, c6, c5, c4, c3, c2, c1, with ci = � × i (i.e. cells 1 and 11, 2 and
10, etc. have pairwise the same spontaneous curvatures). Here, � = −2. Note that the all cells change
shape simultaneously in the whole invagination region as pointed out by Refs. 118, 122. (X) shows the
developed gastrula stage.
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Fig. 15. The cell population size N and the perimeter U vs. time for the parameters of Fig. 14(i)–(xi).
m = t/τ is the number of division cycles the zygote has performed. N = 2m and for the perimeter
U ∝ √

N (the equivalent relation in d = 3 would be U ∝ N 1/3). Note that N ∝ 2t/τ as experimentally
observed(43) and note the step-like increase of the cell population size that occurs as a consequence of
the synchronization of cell division.
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of about ∼64 cells in d = 2 the circle (blastula) becomes unstable and buckles
(Fig. 14(viii)–(x)). At the onset of buckling the stabilizing forces (here: bending
forces) are no longer large enough to balance the de-stabilizing forces that emerge
as a consequence of cell division. Small stochastic fluctuations are sufficient to
cause small undulations of the blastula cell layer that are enhanced by cell divisions.
Hence eventually the layer buckles and forms spatial patterns as those presented in
Fig. 14(viii)–(x). The existence of the buckling does not depend on the choice of
the parameters, only the size of the blastula at which it occurs does. Below we study
the onset of the instability in some more detail. Such a buckling instability would
derail normal development and hence it must be suppressed during morphogenesis.
At about 1000 cells corresponding to about 50 cells along the perimeter of in the
two-dimensional circular cut of the blastula cell division stops and an inward
budding (gastrulation) occurs. From this invagination later the digestive tract
emerges. We model the invagination by assuming a differentiation takes place in
a small “contractile region” which changes the spontaneous curvature to negative
values cs < 0 (Fig. 14(VII)–(IX)). This is motivated by experimental observations
of a simultaneous movement of the cell nuclei from the outer (apical) towards
the inner (basal) cell membrane resulting in an active shape change of cells and
macroscopically in an invagination.(122) In the simulations of Fig. 14 we assumed
that cs decreases from the border of the invaginating region with a gradient of
cs towards the center of the invaginating region; for constant cs the invaginating
region has a more circular cross-section and deviates from the approximately tube-
like shape that has been experimentally observed in sea urchin (Fig. 16; Ref. 43).
For the parameters chosen in our simulations the size of the circle at the instability
corresponds well to the size of a 2d-section of the blastula at the stage where
gastrulation sets in. The change of the spontaneous curvature locally increases the
energy (Fig. 16). The relaxation of the energy then provides the driving force the
invagination. Buckling, on the other hand, increases the configuration energy.

3.2. Generic Behavior of Buckling

In the morphogenetic and tissue maintenance processes of one-layered tissues
that follow blastulation neither a cell mass conservation nor a strict synchronization
of cell division is found. Examples are buckling in embryonic lung tissue(9) and
the branching pattern of pancreatic cell cultures.(10) In these patterns labeling
experiments show that cell proliferation is larger in regions of larger curvature. In
order to test whether our model can explain such labeling pattern we ran equivalent
simulations as those for blastulation firstly dropping the assumption of the total
cell mass be constant. The result (Fig. 17) clearly illustrates that buckling does not
depend on the presence of synchronization. Moreover cells in regions of larger local
curvature are found to be smaller than cells in regions of smaller local curvature.

This occurs since cells in regions of larger local curvature have performed
more divisions than cells at regions of smaller local curvature (and hence are
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Fig. 16. Total configuration energy of the cells at the transition from a blastula to a gastrula after a
differentiation of cells that results in a change of the cell shape. Immediately after the differentiation
that leads to a negative spontaneous curvature (arrow at the x-axis), the mechanical energy increases
and presents the driving force for the invagination. We compare simulations where all cells within the
invaginating region have the same spontaneous curvature with a situation where the cell in the middle
of the invaginating region has the largest negative spontaneous curvature increasing towards the border
of the region by an increment of �. The curves A,B represent simulations where the energy in the
invaginated state is different. The energy value for the blastula without invagination represents the
stage (xi) in Fig. 14; note that at the point where the buckling instability occurs (denoted by an arrow
at the x-axis), the energy rapidly increases (the big black dot denotes the termination of the computer
simulation for this case). As illustrated by the two figures for curve A on the right, the invagination
pattern is more tube-like if cs changes gradually (upper picture) compared to the case of constant cs

that generates a circular cross-section of the invaginated region (lower picture). Eventually the cell
configuration relaxes into a new equilibrium. Generally, the smaller cs the more pronounced is the
invagination and the larger is the energy in the minimum free energy state (curve A with a gradual
change in the spontaneous curvature corresponds to the invaginated state (X) in Fig. 14).

smaller due to the used cell division algorithm in Fig. 12A), in agreement with the
experiments that have shown that the cell proliferation activity is larger in regions
with large bends.(8,9)

Next we dropped the assumption that the total cell mass be constant using the
division algorithm sketched in Fig. 2A and again found the same type of buckling
instability (Fig. 18). For large κ and τ a buckling occurs in the power-law growth
regime (indicated by an upwards bend in the growth curve of Fig. 18(C and D)).

However, as seen for gastrulation, a reliable invagination requires a differenti-
ation that changes locally the properties of the cells. Alternatively to a locally neg-
ative curvature, one may think of a line tension which would occur if neighboring
cells of different types are disfavored to form cell-cell contacts (Fig. 19). In this
case, however, the pre-bend structure determines whether an inward budding or
an outward budding occurs; the minimum free energy configuration may again
not be attainable. Such mechanisms could be involved in the fission of intestinal
crypts either in the large or small intestine.(45,123,124)
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Fig. 17. Folding patterns at N = 512 cells at constant embryo mass if synchronization is dropped.
(In order to study the possible spectrum of behavior we here and in the following figures vary κ and
ε independently; such a behavior can be obtained by anisotropic material properties of the cell layer
and proper migration parameters.) The configurations in the top line are still growing exponentially
and in the bottom line according to a sub-exponential growth law. The picture pairs (A) and (D)
differ only by the ε-value, (B) and (E) by the bending rigidity, (C) and (F) by the cell division rate. (In
particular: (A) τ = τ0/2, κ = 300, ε = 2000, (D) τ = τ0/2, κ = 300, ε = 20, (B) τ = τ0/2, κ = 100,
ε = 200, (E) τ = τ0/2, κ = 1000, ε = 200, (C) τ = 5τ0, κ = 300, ε = 200, (F) τ = 0.05τ0, κ = 300,
ε = 200). The snapshots (A), (B) and (C), all taken from exponentially growing cell configurations
are very similar, in these cases the thickness of the cell chains is homogeneous over the configurations.
Different from that, in (D), (E) and (F) the cells at strong bends appear thinner than those at small
bends. (D) and (E) indicates that small ε have the same effect on the cell configuration as large κ values:
the ratio ε/κ determines if the contribution of the interaction energy or the contribution due to bending
is more important. (F): large growth rates drive the system far from equilibrium (the equilibrium state
is a perfect circle).
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Fig. 18. (A) Number of cells N vs. time t/τ for growing closed 1d multi-cellular manifolds in the
absence of synchronization and if the total mass of the cell configuration is not conserved (i.e. using
the division algorithm of Fig. 2A); the first row in the legend denotes τ/τ0 (here, τ0 is a reference cycle
time), the second row κ/103. For very large cycle times τ (or equivalently, a very large cell motility) the
closed one-dimensional cell manifolds again grow exponentially fast. (B) N and perimeter U vs. t for
τ = τ0, κ = 1000 and ε = 10 without explicit synchronization of cell division and the corresponding
cell configurations at N = 8, 16, 32, 64, 128, 256 cells. The cells divide nearly synchronously as long
as the configuration corresponds to a perfect circle. With increasing deviation from a perfect circle, the
synchronization breaks down. Note that for small τ (or equivalently, a small cell motility) the growth
of the circular (hollow) multicellular geometry is no longer exponentially fast but as U ∝ √

t (C,D).
(C): U/(2π R0) (R0 = R + δ/4) vs. t for different choices of τ in a regime where τ is small and (D)
different choices of κ . In all simulations, ε = 20. The arrows in (C), (D) indicate the points where an
instability occurs; the smaller are τ and κ , the earlier the instability occurs. (E) We have also varied ε:
the larger ε is, the smaller is the domain size at which a bucking occurs. (F) shows the corresponding
diagram of N vs. t ; the earlier the instability occurs the earlier a de-synchronization of cell division
sets in. (In (E,F) we added a curve with a simple square-well potential illustrating the robustness of
the results.)
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Fig. 19. Reliable folding requires either an active cell shape change or may be driven by a line tension.
(A) start configuration after the differentiation. The (NA = 14) cells of type A (black) have different
physical properties than the (NB = 50) white ones of type B. Differential adhesiveness between the
A-cells and the B-cells may result in an edge energy Eedge = σ� where � denotes the linear size
of the patch of region A. (B) To obtain an invagination as shown in (D) and (F), the cells have
to pass over configuration (B), where the region of A-cells is stretched and thus � as well as the
edge energy Eedge has an maximum. (C) shows the equilibrium configuration for cA

0 = cB
0 = 0 and

σ = 4 × 105. In order to minimize the edge energy the system shows budding, but different from a
system with negative spontaneous curvature, outward not inward budding. (D) Perfect invagination
obtained for rA ≈ cA

0 = −1/43, rB ≈ cB
0 = 1/12. (E) If the system has a line tension and a negative

spontaneous curvature (cA
0 = −1/43, cB

0 = 1/12 and σ = 4 × 105), despite the fact that the global
energy maximum is an inward bud (F), the system buds outward into a local energy minimum. The
reason for this is a kinetic one: each system invaginating has to pass configuration (B) which for
large σ requires a too large activation energy. (F) configuration of minimum energy for (cA

0 = −1/43,
cB

0 = 1/12 and σ = 4 × 105), calculated by “switching on” the edge energy after configuration (B)
has been passed. Different from (D) where σ = 0, the edge length is smaller causing the invaginated
bud to be smaller as well.

The results of the simulations for both, multi-cellular aggregates (monolayers
and multi-cellular spheroids) and tissue layers are remarkably robust. A change of
the potential energy from harmonic to the Hertzian or the JKR-model (Fig. 2C;
and for some cases even square-well, see Fig. 18(E) and(F)), a replacement of the
combination of the isotropic potential cell-cell interaction energy and the bending
energy by a polar potential energy shown in Fig. 20, or the use of overdamped
equations of motion (of the type outlined in Eq. (6)) for each cell instead of the
Metropolis algorithm that was used here did not change the results for the selected
cases we looked at.

4. DISCUSSION

Recent experimental findings, often complemented by a comparison to re-
sults of mathematical models suggest that mechanical interactions play an impor-
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Fig. 20. Instead of a bending energy in combination with a homogeneous cell-cell adhesion potential
to model the cell polarity we have also used a direct approach with a polar cell-cell adhesion energy.
There we assumed a small contact region (denoted by the symbol �); adhesion is only present if the
contact regions of neighbor cells overlap (which is the case for cells 1, 2 and 2, 3 but not for cells 3,
4). Contacts in which the connecting line between neighbor cells separates the contact region in two
equally large segments (as, for example for cells 2, 3) are favored. After each cell division contacts
were assumed to be re-organized. The qualitative results were as those for the bending energy.

Fig. 21. (A) If the cell-substrate adhesion is not strong enough to prevent cells from being pushed
out of the monolayer, cells pile up in the absence of anoikis. The intensity of the red color denotes
the distance to the substrate. Here we assumed that cells can re-enter into the cell cycle if the stress
is relaxed and their degree of compression falls below a critical threshold. (B) If the interior cells
can actively relax stress by down-regulating the stiffness of their cytoskeleton (here, we assumed that
the Young modulus changed from E = 450 Pa → E = 200 Pa) then the interior cells relax stress and
almost all stay in the monolayer.

tant role in growth and pattern formation phenomena of multi-cellular systems.
Examples are multi-cellular spheroids embedded in agarose gel,(6) cell monolayers
growing on properly dissected surfaces faces(7) and imaginal disc growth.(11) Based
on previous findings in growing monolayers of tumor cells in-vitro and recent re-
sults of in-vivo situations Bru et al.(125) have speculated that after stimulation of a
immune response neutrophils may stop tumor expansion mainly as a consequence
of the competition of cells for free space. We have demonstrated by computer
simulations based in individual-cell based models that the observed growth kinet-
ics in both, monolayers and multi-cellular spheroids may largely be explained by
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a biomechanical form of contact inhibition. Our simulations were based on the
assumptions that a growth stop maybe triggered by a certain degree of deforma-
tion or compression. Without a mechanism that controls a growth stop, a perfect
monolayer would never form but cells would be pushed out of the monolayer if
the stress generated by the growth would overcome a certain threshold value that
is given by the strength of cell-substrate adhesion. We here focused on compact
cell aggregates; some monolayer phenotypes in particular fibroblasts show ini-
tially a sparse distribution of cells; however, it may be argued that their expansion
is expected to qualitatively follow a Fisher–Kolmogorov–Petrovskii–Piskounov
(FKPP)-equation-like dynamics such that these eventually again form dense
aggregates.(97) Recent findings suggest that cells are able to regulate their proper-
ties such that stress within monolayers is relaxed.(7) Figure 21 shows that down-
regulation of the cytoskeleton stiffness of interior cells at a critical stress is able to
stabilize a quasi-monolayer even in case the contact inhibition is not sufficient to
prevent cells from being pushed out of the monolayer. Cells that experience larger
deformation or compression on average have a longer cell cycle length than cells
which experiences less deformation or compression; isolated cells are assumed to
have the smallest (average) cell cycle length. We suggested to test our proposed
mechanism either by tracking the fate of individually labeled cells which we predict
form clones of largely varying sizes even in case they emerged at almost the same
time during the growth process, or in co-cultures of cells growing in an environ-
ment of non-dividing cells where we predict that the spatial pattern depends largely
on the physical properties of the embedding medium. For example, if the cells
that enclose an expanding clone have a large motility the geometric shape of the
expanding clone should be more compact while in case the motility of the environ-
mental cells is small, finger-like growth patterns should form. Finger-like growth
patterns can also be triggered by a large adhesion between the environmental cells;
in this case the environmental cells adhere in small patches leaving free space be-
tween the patches for the growing cell clone to expand (Drasdo and Hoehme, in
preparation). We expect that the same qualitative growth scenario would be found
if instead of cells colloidal particles would be used as an embedding medium.
Such experiments would be a natural extension of the experiments by Jain and co-
workers.(6,126,127) Interestingly, random fluctuations in the cell cycle length result
in a larger growth velocity of a cell population compared to cell populations where
cell division occurs synchronized even in case the expectation value of the cell
cycle length is the same.(97) This phenomenon may be an explanation for the obser-
vation that Glasgow osteosarcoma in mice grow faster if the circadian rhythm, that
regulates the synchronization of cell division in the intestine, are suppressed.(128)

Mutations are known to affect the control of apoptosis and of the cell
cycle.(18) How is a tumor expected to evolve in case the apoptosis is increasingly
down-regulated or the length of the (or passage into the) cell cycle is increas-
ingly upregulated? Our simulations for this case suggest that a selection on cells
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which show a faster passage through the cell cycle occurs i.e., a selection on
cells that grow and divide faster and undergo less apoptosis. This modifies the
shape of the growth curve qualitatively since it generates a drift of the average
effective cell cycle length (or in other words, growth time) towards smaller values.
Hence random mutations here are a source of diversity of properties which-by
selection-eventually leads to an overall increase of the growth velocity of the cell
population.

The microscopic processes of growing tumor interfaces can be concluded
to a large extend from the critical exponents that characterize the fluctuations
of the interface. Bru et al.(36) suggested that the growth pattern in tumor mono-
layers belong to the Molecular Beam Epitaxy class. Buceta and Galeano(100)

question this. We have performed simulations in 2d-monolayers which clearly
suggest a KPZ-like behavior; however, in our simulations the hopping was ne-
glected or chosen to be of the order of the cell diameter; however, very recent
simulations with a larger hopping rate indicate that the surface dynamics remains
KPZ-like.(96)

As a second example we studied the stability of growing tissue layers that
are not attached to a fixed surface (as opposed to monolayers that grow on a
flat fixed substrate in a petri dish). An example for this situation is the blastula
formation of species that form a one cell thick hollow blastula (geometrically a
hollow sphere). Here, the one-cell-thick layer is stabilized by mechanical energy.
Starting from a model introduced in Ref. 68 we have shown that buckling oc-
curs if the stress generated by the growing and dividing cells can no longer be
balanced by the stabilizing mechanical energy (here, the bending energy; sim-
ilar effects can be observed for expanding elastic shells if shear stress plays a
role(129)). The origin of the layer-stabilizing mechanical energy is the cell polarity.
This differs from monolayers growing on fixed substrates in that a piling up of
cells rather than a buckling occurs if the monolayer gets unstable. We have shown
examples that clearly suggest that the emergence of buckling does not depend
on specific mechanisms that are observed in blastula formation such as a syn-
chronized cell division or a conservation of the total embryo mass but that this
effect is generic. This line of argument is supported by observations for example
in lung(9) and pancreatic cells(10) which show that cell division is stronger at po-
sitions of larger local curvature; this is precisely the result that we found in our
simulations.

Hence, in summary, many experimental observations in multicellular systems
can be explained by assuming cells are simple physical particles, performing
(active) random moves and moving under the influence of external forces, and
being able to grow and divide. Such a dynamics may be modeled by a master
equation (e.g. Refs. 66, 69) or a system of Langevin equations.(77,120)

By comparison of the model results with experimental findings it is largely
possible to identify at which point in a growth or pattern formation process reg-
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(A)

(B)

(C)

Fig. 22. Highly simplified sketch of a simulated regeneration scenario after a cut-like lesion of a
two-dimensional model tissue (skin), composed of epithelial cells that represent the key component
of the epidermis and fibroblasts representing an important component of the dermis. The dermis is
located below the epidermis and consists of the papillary and reticular dermis. The papillary dermis is
directly located below the epidermis and has a high density of fibroblasts while the reticular dermis is
a loose connected tissue with a much lower density of fibroblasts. A scar is often accompanied by an
over-production of soft tissue (hypertrophic scars, kelloids) which then leads to a local protrusion of
the skin. Within our model, in the initial configuration, cells at the surface of the lesion are switched
into the proliferating state as is known from observation.(130) Epithelia are marked pink, with black
(quiescent) or red (prolif.) boundaries. They are assumed to grow by directed cell division and to form
polar contacts to their neighbors at their side membranes. Fibroblasts are drawn in yellow, with grey
(quiescent) or blue (prolif.) boundaries. (Usually the fibroblast density is smaller than in the picture.
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ulatory or genetic changes of cells or groups of cells must have occurred. At
this point the simulated (model) scenario deviates from the one that is exper-
imentally observed. Examples for this are the growth stop of monolayers at
confluence observed for many cell lines and gastrulation, i.e. the invagination
that occurs prior to the potential occurrence of a (buckling) instability in early
development.

Noise is inherently present in biological systems. We have shown that it
can be the source for instabilities and even modify the expansion velocity of
growing multicellular aggregates. Moreover, as explained above the fluctuation
structure of the interface between an expanding cell clone and its environment
may permit to conclude the migration and growth behavior on the single-cell
level. However, significant qualitative differences in the system behavior of cell
populations where found in our simulations only in case of random mutations that
affect the cell-biological properties of the cells (in our case the apoptosis or growth
control).

Still, most models are not at a level where they permit quantitative predic-
tions. However, the advance in experimental techniques increasingly permit to
study the effect of molecular changes on the multi-cellular phenotype of tissues
and tumors. This requires to spatially and temporally resolve the intracellular reg-
ulatory mechanisms. Some attempts into the direction of multi-cellular models
that include an internal structure has been made recently in the context of devel-
oment and morphogenesis (e.g. Refs. 35, 131, 132) and in the context of tumor
growth (e.g. Refs. 107, 133). Studies along this line, performed in close contact
with experiments, will eventually permit to improve the models such that they
can be used for analysis and predictions in biotechnological applications,(134,135)

cancer treatment (e.g. Refs. 136–139), and regenerative medicine (see Fig. 22
for a sketch of the regeneration of a cut-like region; examples where single-cell
based models are a proper choice compared to continuum mechanical models are
epithelial regeneration processes as in skin(140) or in liver after toxification(141) or
partial hepatectomy(142)).

Fig. 22. Continued. One may interpret the yellow elastic circles also as soft tissue composed of both,
extracellular components and fibroblasts.) The scenario A–C show different mechanisms how the
lesion could be closed. In order to prevent budding (shown in (A)) which would occur in the absence
of a growth stop, a correct closure of the lesion as in (B),(C) requires an an active switch from prolif.
→ quiescent. Scenario (B) leads to a gradual differentiation of fibroblasts by signals from their nearest
neighbors (since cells at the inner border of the lesion drawn in blue have less neighbors they continue
to proliferate until the lesion has been closed). In (C) a transition from prolif → quiescent for fibroblasts
occurs as a consequence of a too large compression of the cells. Epithelial cells stop growing if they
come into contact at their side membranes: this also models a biomechanical form of growth stop.
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APPENDIX A: TIME SCALES AND STEP SIZES IN

THE MONTE CARLO SIMULATION

Each growth trial that doesn’t result in an forbidden large compression of a
cell (i.e. di j < Ri + R j − δ which denote excluded volume (EV) interactions) is
accepted. The cycle time of a cell not subject to EV interactions after m divisions
is

τ = 2R(m + 1)ng�t

δa(m + 1)
(A.1)

where δa(m) = δamax(m)/2 is the average growth step size, ng is the number of
migration trials between two successive growth trials, R(m) is the cell radius after
the cell has performed m divisions, �t the time interval between two successive
migration trials and ng�t the time between two successive growth trials. In the
monolayer simulations, the cell size is independent of the number of divisions
a cell has performed so R(m) and δamax(m) do not depend on m. In the tumor
spheroid simulations and in the blastula formation simulations, however, the cell
size decreases with m. Equation (A.1) should express that in the absence of external
influences the number of growth steps between two successive divisions which
determine the cell cycle length has to be invariant under a change of the cell size.
Consider a zygote (here: m = 0, and the radius of the zygote is R(0)). Then in
passing from the zygote to the two-cells stage, τ = 4R(1)ng�t/δamax(1) should
be the same as in passing from size R(m) to R(m + 1), given by Eq. (A.1). R(m) =
(R(0)/

√
2m and δamax(m) = δamax(0)/

√
2m so that τ = 4R(0)ng�t/δamax(0) in

Eq. (A.1) becomes independent of m. For tumor spheroid growth as well as
for blastula formation R(m)/δamax(m) must be independent of m, so we may
generally set amax(m) = amax(0)/ f (m) and R(m) = R(0)/ f (m) ( f (m) = √

2m for
the blastula, and f (m) = 0.95−m/3 for the growing tumor spheroid.

The scaled time interval becomes

�t̂ ≡ �t

t
= δamax(0)

2R(0)ng
(A.2)

For cells subject to EV interactions the cycle time is τR ≥ τ .
In the absence of drift the diffusion constant D can be calculated from

〈(δr )2〉 =
∫

r2 P(r )ddr = 2d D�t (A.3)

where d is the dimension and P(r ) the probability to find a step of size r . The
integration is performed over a spherical volume of radius ξmax(m). Assuming an
isotropic distribution P(r ) = 1/V with V = ∫

ddr , we find D = ξ 2
max/(8�t) in



On the Role of Physics in the Growth and Pattern Formation 335

d = 2. Non-dimensionalizing all quantities yields

D̂(m) = ξ̂max(m)2

(8�t̂)
(A.4)

In d = 3 the denominator becomes 15�t̂ . So given D, l and τ , D̂ is calculated. The
step sizes ξmax should be chosen sufficiently small in order to insure a linear force-
velocity relationship. Then �t̂ follows from the last equation and, after insertion
into the equation for �t̂ = . . ., permits to calculate either ng , if δamax(0) is chosen,
or δamax(0), if ng is chosen. δamax(0) determines the cycle time distribution of an
isolated cell so the possible range for δamax(0) is fixed if the cell cycle distribution
is known (which is usually not the case). ng has to be sufficiently large to insure
that a cell performs sufficiently many migration trials to be not kinetically trapped
in an energetically unfavorable state. We have chosen the number of rotation trials
to be as large as the number of migration trials.

If one would still assume the Stokes-Einstein relation were true then D must
scale as the inverse cell size, ξ̂max(m)2 ∝ 1/R(m) hence ξ̂max(m)2 = ξ̂max(0)2 f (m).
However, this relation is very questionable for cells as least in cases where cells
can be assumed to perform an active motion.

APPENDIX B: MATHEMATICAL DISCUSSION OF

BUCKLING INSTABILITY

The robustness suggests the instability be generic. An explanation can be
given by a continuum model as has been briefly outlined in Ref. 114. Connecting
the middle-points of the cells in the configurations found in the simulations for
N ≥ 4 we get a one-dimensional closed curve in two dimensions. As in Goldstein
and Langer(143) we may parameterize the closed curve by the position vector r (α, t)
where α ∈ [0, 1) is a parameter, t is the time. r (α, t) is periodic in α, i.e. r (α =
1, t) = r (α = 0, t), the same holds for all derivatives, i.e. ∂r (α,t)

∂α
|α=0 = ∂r (α,t)

∂α
|α=1.

Note that U = ∫ 1
0

√
g dα where g = ∂r (α,t)

∂α

∂r (α,t)
∂α

is the determinant of the metric
tensor.

The mechanisms that contributes to the dynamics are (a) local proliferation
of arclength due to cell division, (b) stabilization of stretched structures by a
bending energy, (c) constant (at least on the average) perimeter if cell division is
switched off. We only consider cell configurations which show sufficiently small
deviations from a circle which is surely true at the onset of the instability. For
such configurations intersections of the curve with itself cannot occur. Thus we
can neglect the excluded volume effect which would have to be represented by a
term ∼∫

ds ′ ∫ ds(δ(r (s) − r (s ′))) with the arclength ds = √
gdα (e.g. Ref. 144).
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According to our assumptions (a)–(c) we make the formal ansatz:

ζ
∂r (α, t)

∂t

∣
∣
∣
∣
α

= − 1√
g

δF

δr
(B.1)

where the pre-factor 1√
g ensures reparametization invariance and a damping con-

stant (= inverse of the mobility) has been absorbed into the timescale.
Further

F = F0(α, t) −
∫ 1

0
�(α, t)

√
gdα (B.2)

where �(α, t) is a Lagrangian multiplier field which ensures that the condition
for the proliferation of length (cf. condition (a)) which will be specified below, is
fulfilled.

F0 = κ/2
∫ 1

0
[(c(α, t) − c0)2]

√
gdα (B.3)

is the bending energy (c(α, t) is the local, c0 the spontaneous curvature). To get a
closed set of equations, we have to fix now a condition for the local metric g:

∂
√

g

∂t
≡ f (c). (B.4)

(In the following, we use ∂t ≡ ∂
∂t , ∂α ≡ ∂

∂α
, etc.) After performing the varia-

tion in Eq. (B.1), we obtain with Eq. (B.4) a set of two equations of motion:

ζ∂t r =
[κ

2

(
c3 − cc2

0 + 2∂2
s c

) + �c
]

n − ∂s�t (B.5)

and

ζ
∂
√

g

∂t
= √

g
(κ

2

[
c4 − c2c2

0 + 2c∂2
s c

] + �c2 − ∂2
s �

)

≡ f (c) (B.6)

with n being the local normal and t the local tangent to the curve. The normal
is directed outward. By the transformation λ ≡ � − κ/2c2

0, one can absorb the
spontaneous curvature into the Lagrangian, i.e., in d = 2 dimensions, the physics
is independent of a global spontaneous curvature (this has also been found for
a stability analysis of two-dimensional vesicles by Seifert(145)). To study pertur-
bations of the homogeneous solutions it is convenient to turn to polar coordi-
nates (r, θ ), and present r and λ as functions of θ , t , i.e. r = r (θ, t), λ = λ(θ, t)
with θ ∈ [0, 2π ). Now ds =

√
r2 + (∂θr )2 dθ and the boundary conditions read

r (θ = 0, t) = r (θ = π, t) and ∂θr (θ, t)|θ=0 = ∂θr (θ, t)|θ=π . The homogeneous
solution is then given by:

ζ∂t r = f (c) (B.7)
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To understand the meaning of f (c), we make the transformation λ̃ ≡ � −
f (c)√
gc2 , thus Eq. (B.5) becomes

∂t r =
[
κ

2

(
c3 + 2∂2

s c
) + λ̃c + f (c)√

gc

]

n − ∂s

(

λ̃ + f (c)√
gc2

)

t . (B.8)

The term Gn ≡ f (c)√
gc describes the growth normal to the line. Here, λ̃ insures

the conservation of arclength and has been separated from the term that is re-
sponsible for the growth. In the regime where U ∝ t0.5 a cell performs a growth
step into the direction of the local normal with a probability proportional to the
opening angle β to its neighbors (Fig. 11C). For small angles, β can be shown
to correspond to the product of the local curvature with the cell-cell distance
in lowest order of a Taylor expansion, i.e., local length proliferation due to cell
division corresponds to a negative line tension (∼c(α, t)l(α, t)n; note that for non-
conserved mass the cell-cell distance, l(α, t) ≈ constant and can be absorbed in the
growth rate while for total conserved mass l(α, t) ∼ 1/(

√
2)m(α,t), where m(α, t)

is the generation of the cell at position α. For synchronized cell division m(t) =
log(N (t))/ log(2) thus l ∼ 1/

√
N independent of α.). Comparison with Eq. (B.8)

leads to f (c) = σ
√

gc2 where σ is a growth rate. For the homogeneous case, this
corresponds to f (c) = 1/r thus r ∼ √

t . This is the result found in the simula-
tions (Fig. 18(B–D)). In the exponential growth regime, the ansatz f (c) = σ0

√
g

yields r ∼ exp{σ0t} i.e., exponential growth as observed in Fig. 18A. A general
ansatz may hence be f (c) = σk

√
gc2k with (k = 0, 1, 2, . . .). In the following we

linearize around the homogeneous state. From Eq. (B.6) it is obvious that the
dynamics of � is determined by that of r . Now we linearizing around r = r0(t),
� = �0 = 1

2 (−κ/r2
0 + κc2

0) + σ where r0 is the solution of dr0/dt = σ/r0 by
the ansatz r (θ, t) = r0(t) + δr (θ, t) and �(θ, t) = �0 + δ�(θ, t). With δr (θ, t) =
ξ (t) exp(imθ ) (m = 0, 1, 2, 3, . . . .), δ�(θ, t) = η(t) exp(iqθ ) (q = 0, 1, 2,

3, . . . .), and taking into account q = m∀m, q (because the dynamics of � fol-
lows that of r ) we obtain with ξ (t) ∼ ξ0 exp(w(q)t) the dispersion relation

w(q) = −κq6 − q4
(
σr2

0 + 2κ
) + κq2 + σr2

0

(1 + q2)r4
0

= −κq2(q2 − 1)2 − σr2
0 (q4 − 1)

(1 + q2)r4
0 (B.9)

The mode q = 0 has the equation w(0) = −σ/r2
0 which means, that ev-

ery homogeneous perturbation would be damped out compared to the unper-
turbed homogeneous perturbation (the q = 0-mode doesn’t measure changes
with respect to a stationary but to a homogeneous solution which grows it-
self, so the difference decreases with time after a perturbation. The direction
of movement does even not change if w(0) would be positive). w(q = 1) = 0:
Up to linear order, the q = 1-mode describes a translation of the circle which is
marginally stable.(145) Note that for the general growth function f (c) = σk

√
gc2k
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(k = 0, 1, 2, . . .), (q4 − 1) → (q2 − 1)(q2 − 1 + 2k) in the numerator of the 2nd.
term on the rhs. of Eq. (B.9). For q2 	 max(1, 2k − 1), ω(q) ≈ −Aq4 + Bq2

with A = κ/(r4
0 ζ ), B = σk/r2k

0 (for q 	 1) one obtains a dispersion relation as
for particular cases of dendrite growth.(146) If no growth occurs (σk = 0) the circle
is the only stable solution. Otherwise, ω(q = 0) = σ0 > 0 for exponential growth,
so homogeneous deviations grow. For the power-law growth regime U ∝ t0.5,
ω(0) = −σ1/r2

0 , so homogeneous perturbations are damped out. ω(q = 1) = 0, a
translation of the circle is marginally stable(145) (compare above). ω has a second
zero at q2

c = X for κ = 0 and q2
c = [1 + X + {(1 − X )2 + 8Xk}0.5]/2 for k > 0,

with X ≡ B/A = ζσkr4−2k
0 /κ . For 1 < q < qc, ω(q) > 0. For q → ∞, ω(q) < 0,

i.e., short wavelength perturbations are damped out. The fastest growing mode is
q2

m ≈ X/2 (if qm 	 1). qc and qm grow with increasing X . The buckling insta-
bility occurs at domain sizes ∝ q−1

c that decrease with increasing growth strength
and decreasing bending rigidity, in agreement with the tendencies found in the
computer simulations.

In the computer simulations we observed in the power-law growth regime
that the buckling occurs at domain sizes that increase with τ and κ and decrease
with ε. This can be qualitatively understood as follows: The larger κ is, the better
is the bending energy able to damp out small deviations of the cell configuration
from a perfect circle. A large cycle time has the same effect: the cell configuration
has more time to relax into the minimum energy configuration. A large ε has the
opposite effect. The nearest-neighbor energy is minimized if cells avoid configu-
rations where the distance between nearest neighbors falls below the equilibrium
value, e.g. by increasing small deviations perpendicular to the circular configura-
tion. These are disfavored by the bending energy which decreases as 1/r . Hence
the larger ε is the earlier the bending energy becomes unable to balance the energy
increase of nearest-neighbor energy. It is possible to analytically calculate the point
at which the buckling instability occurs within the power-law growth regime based
on a Langevin equation for each cell and the assumption that buckling occurs if
the bending force becomes of the same order as the de-stabilizing forces due to
cell growth and division.
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